为什么要将半导体变为本征半导体
1. 为什么将自然界导电性能中等的半导体材料制成本征半导体,导电性能极差,又将其掺杂, 改善导电性
由于金属材料的帕尔帖效应是相对较弱的,而半导体材料基于帕尔帖原理运行,所产生的效应也会更强一些,所以,在制冷的材料中,半导体就成为了主要的原料。
半导体制冷技术的应用原理是建立在帕尔帖原理的基础上的。1334年,法国科学家帕尔帖发现了半导体制冷作用。帕尔贴原理又被称为是”帕尔贴效益“,就是将两种不同的导体充分运用起来,使用A和B组成的电路,通入直流电,在电路的接头处可以产生焦耳热,同时还会释放出一些其它的热量。
此时就会发现,另一个接头处不是在释放热量,而是在吸收热量。这种现象是可逆的,只要对电流的方向进行改变,放热和吸热的运行就可以进行调节,电流的强度与吸收的热量和放出的热量之间存在正比例关系,与半导体自身所具备的性质也存在关系。
(1)为什么要将半导体变为本征半导体扩展阅读:
本征半导体不宜用于制作半导体器件,因其制成的器件性能很不稳定。反之,掺入一定量杂质的半导体称为杂质半导体或非本征半导体,这是实际用于制作半导体器件及集成电路的材料。
本征半导体的导电能力很弱,热稳定性也很差,因此,不宜直接用它制造半导体器件。半导体器件多数是用含有一定数量的某种杂质的半导体制成。根据掺入杂质性质的不同,杂质半导体分为N型半导体和P型半导体两种。
2. 在制造半导体器件时,为什么先将导电性能介于导体和绝缘体之间的硅或锗制成本征半导体
掺入杂质后,在本征半导体与杂质半导体中间就形成了PN结,
在P型半导体中有许多带正电荷的空穴和带负电荷的电离杂质。在电场的作用下,空穴是可以移动的,而电离杂质(离子)是固定不动的。N 型半导体中有许多可动的负电子和固定的正离子。当P型和N型半导体接触时,在界面附近空穴从P型半导体向N型半导体扩散,电子从N型半导体向P型半导体扩散。空穴和电子相遇而复合,载流子消失。因此在界面附近的结区中有一段距离缺少载流子,却有分布在空间的带电的固定离子,称为空间电荷区。P 型半导体一边的空间电荷是负离子,N 型半导体一边的空间电荷是正离子。正负离子在界面附近产生电场,这电场阻止载流子进一步扩散,达到平衡。
在PN结上外加一电压,如果P型一边接正极,N型一边接负极,电流便从P型一边流向N型一边,空穴和电子都向界面运动,使空间电荷区变窄,电流可以顺利通过。如果N型一边接外加电压的正极,P型一边接负极,则空穴和电子都向远离界面的方向运动,使空间电荷区变宽,电流不能流过。这就是PN结的单向导电性。
PN结加反向电压时,空间电荷区变宽,区中电场增强。反向电压增大到一定程度时,反向电流将突然增大。如果外电路不能限制电流,则电流会大到将PN结烧毁。反向电流突然增大时的电压称击穿电压。基本的击穿机构有两种,即隧道击穿(也叫齐纳击穿)和雪崩击穿,前者击穿电压小于6V,有负的温度系数,后者击穿电压大于6V,有正的温度系数。PN结加反向电压时,空间电荷区中的正负电荷构成一个电容性的器件。它的电容量随外加电压改变。
根据PN结的材料、掺杂分布、几何结构和偏置条件的不同,利用其基本特性可以制造多种功能的晶体二极管。如利用PN结单向导电性可以制作整流二极管、检波二极管和开关二极管,利用击穿特性制作稳压二极管和雪崩二极管;利用高掺杂PN结隧道效应制作隧道二极管;利用结电容随外电压变化效应制作变容二极管。使半导体的光电效应与PN结相结合还可以制作多种光电器件。如利用前向偏置异质结的载流子注入与复合可以制造半导体激光二极管与半导体发光二极管;利用光辐射对PN结反向电流的调制作用可以制成光电探测器;利用光生伏特效应可制成太阳电池。此外,利用两个PN结之间的相互作用可以产生放大,振荡等多种电子功能。PN结是构成双极型晶体管和场效应晶体管的核心,是现代电子技术的基础。在二级管中广泛应用
3. 为什么说本征半导体在低温时是绝缘体
本征半导体是指结构完整的纯净的半导体(譬如单晶硅)
本征半导体在一定温度下,原子最外层电子有可能脱离共价键的束缚,从而成为自由电子,留下一个原来束缚电子的地方,叫空穴,电子带负电荷,空穴带正电荷(原来电中性的原子少了一个电子,带正电荷,我们也就叫空穴带正电荷了)
脱离束缚的电子(自由电子)的移动可以导电,空穴周围的价电子(注意是价电子,不是脱离束缚的自由电子)填补空穴,又会形成空穴的移动(价电子移动,空穴向相反方向移动),所以本征半导体中自由电子和空穴都是带电荷的可移动的粒子,称为载流子(所谓载流子就是在外加电场下能做定向运动的粒子,也就是说有载流子的物质才能导电)。上述产生电子空穴对的过程叫本征激发,自由电子与空穴重新结合称为载流子的复合。当本征激发与载流子复合的速率达到动态平衡时,本征半导体内载流子浓度就固定不变。
本征激发与温度有关,温度越高,价电子获得能量越大,就越可能脱离共价键束缚,本征激发就越强,载流子浓度就越高,导电性就越好,而在低温时,本证激发弱,载流子浓度低,所以可以将本征半导体看作绝缘体。本征激发受温度影响很大,而且本征半导体本身的导电性就不强,所以实际中的半导体都不是本征半导体,而是掺杂半导体。
4. 什么是本征半导体
本征半导体
完全纯净的半导体称为本征半导体或I型半导体。硅和锗都是四价元素,其原子核最外层有四个价电子。它们都是由同一种原子构成的“单晶体”,属于本征半导体。
1.半导体中的两种载流子—自由电子和空穴
在热力学温度零度和没有外界能量激发时,价电子受共价键的束缚,晶体中不存在自由运动的电子,半导体是不能导电的。但是,当半导体的温度升高(例如室温300oK)或受到光照等外界因素的影响,某些共价键中的价电子获得了足够的能量,足以挣脱共价键的束缚,跃迁到导带,成为自由电子,同时在共价键中留下相同数量的空穴,如图2—3(a)所示。空穴是半导体中特有的一种粒子。它带正电,与电子的电荷量相同。把热激发产生的这种跃迁过程称为本征激发。显然,本征激发所产生的自由电子和空穴数目是相同的。
由于空穴的存在,临近共价键中的价电子很容易跳过去填补这个空穴,从而使空穴转移到临近的共价键中去,而后,新的空穴又被其相邻的价电子填补,这一过程持续下去,就相当于空穴在运动。带负电荷的价电子依次填补空穴的运动与带正电荷的粒子作反方向运动的效果相同,因此我们把空穴视为带正电荷的粒子。可见,半导体中存在两种载流子,即带电荷+q的空穴和带电荷–q的自由电子。
在没有外加电场作用时,载流子的运动是无规则的,没有定向运动,所以形不成电流。在外加电场作用下,自由电子将产生逆电场方向的运动,形成电子电流,同时价电子也将逆电场方向依次填补空穴,其导电作用就像空穴沿电场运动一样,形成空穴电流。虽然在同样的电场作用下,电子和空穴的运动方向相反,但由于电子和空穴所带电荷相反,因而形成的电流是相加的,即顺着电场方向形成电子和空穴两种漂移电流。
5. 我想知道为什么要将半导体变成导电性很差的本征半导体
这是半导体技术中的基本概念问题,提得好。
因为制造半导体器件和集成电内路时,最容重要的是要很好地控制掺入的杂质的种类和数量(浓度);而且有些杂质对半导体载流子的影响也很不好(例如减短寿命、降低迁移率)。为了达到能够可控的掺杂和去掉有害杂质,就必须事先把作为原始材料的Si片提纯——使之成为本征半导体。否则就难以实现有目的地掺杂和做好器件和电路。
6. 本征半导体变成N型/P型半导体
通过注入、气态源、液态源、固态源扩散进行掺杂可获得N型或P型半导体,例如,掺入硼可得到P型,掺入磷或砷可得到N型。
7. 如何将本征半导体变为P型半导体
如果你了解二者的定义
那么,掺入Ⅲ族杂质或其它可以形成受主能级的杂质就行了
8. 设计一个实验,首先将一块本征半导体变为p型半导体,然后再设浓度使它变成n型半导体
硅(Si)材料中离子注入硼或者硼源高温炉管参杂低浓度。比如1e14,这时候为版p型半导体,再对该权材料子注入磷或或者磷源(如PH3,POCl3)高温炉管参杂高浓度,比如5e14,这时候该材料转为N型半导体。
通过注入、气态源、液态源、固态源扩散进行掺杂可获得N型或P型半导体,例如,掺入硼可得到P型,掺入磷或砷可得到N型。
比如硅材料中参入3价元素杂质(如硼),杂质原子贡献一个空穴,使得原本征半导体成为P型半导体,参入5价元素(如砷)可使得杂质原子贡献1个自由价电子,使得原本征半导体成为N型半导体。
(8)为什么要将半导体变为本征半导体扩展阅读:
在一定温度下,电子-空穴对的产生和复合同时存在并达到动态平衡,此时本征半导体具有一定的载流子浓度,从而具有一定的电导率。加热或光照会使半导体发生热激发或光激发,从而产生更多的电子-空穴对,这时载流子浓度增加,电导率增加。
半导体热敏电阻和光敏电阻等半导体器件就是根据此原理制成的。常温下本征半导体的电导率较小,载流子浓度对温度变化敏感,所以很难对半导体特性进行控制,因此实际应用不多。
9. 本征半导体为什么加五价磷就能变成N型半导体
楼主您好。本征半导体中,空穴和电子数目相等,是完全不含杂质且无晶格缺陷专的纯净半导体,实际的半属导体由于缺陷、掺杂等各种原因,根据导电机制不同划分为n型和p型半导体;而本征半导体的掺杂有这么几个原则:掺杂高价元素(施主杂质),可以提供更多的电子,导致本征半导体中的电子-空穴对平衡移动,空穴减少,成为n型半导体。而掺杂低价元素(受主杂质),导致半导体中电子数目减少,相应空穴数目增多,成为p型半导体。总结来说,与本征半导体本身的价态有关,如果在Si半导体中,楼主提到的五价元素掺杂可以使Si成为n型半导体;掺杂三价元素会成为p型半导体。
10. 为什么本征半导体导电性会变差
1、这么复说不太严谨,对于不同种材料,制比如Si和GaN,本征Si的导电性要比低掺杂GaN的好。
2、对于同一种半导体,掺杂之后在常温下杂质电离的载流子比本征电离的要多,所以掺杂半导体导电性比本征好。
3、对于一块掺杂的半导体,随温度的升高,而其本征电离加剧,当本征电离产生的载流子高于杂质电离时,可以认为才是半导体就是一块本征半导体,而温度升高载流子受到晶格散射的影响也会加剧,所以导电性会变差,而更致命的是此时半导体的导电类型发生了变化,对于一般靠PN结组成的器件,这会导致器件的失效。