什么是半导体材料的压阻效应
⑴ 求压阻效应 名词解释
压阻效应,是指当半导体受到应力作用时,由于载流子迁移率的变化,使其电阻率发生变化的现象。
⑵ 何谓半导体的压阻效应扩散硅传感器结构有什么特点
压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。
压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。
压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。
压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。
除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。
这种压力变送器主要利用液体或气体在检测器件上形成的压力来检测液体或者气体的流量或压强。把这种压力信号转变成标准的0~10V或者4~20mA电信号。以便控制使用。
压力和电信号的转化主要由各种压力传感器的核心部件完成。核心部件主要由压力检测体和放大电路组成。
⑶ 什么是半导体压阻效应
半导体压阻效应就是压力使半导体电阻发生改变的现象。参见“内http://blog.163.com/xmx028@126/”中的有关说明。容
⑷ 压阻效应的各向异性
压阻效应是各向异性的,要用压阻张量π(四阶张量)来描述,它与电阻率变量张量δ ρ(二价张量)和应回力张量k(二阶答张量)有如下关系(如图1):π:k。由于对称二阶张量只有六个独立分量, 故亦可表达成(如图2)这样,压阻张量可用6×6个的分量来表达。根据晶体对称性,像锗、硅及绝大多数其他立方晶系的半导体,压阻张量只有三个不等于零的分量,即π11、π12和π44。
⑸ 半导体应变片以压阻效应为主,它的灵敏度系数为金属应变片的多少倍
半导体应变片是将单晶硅锭切片、研磨、腐蚀压焊引线,最后粘贴在锌酚醛树脂或聚酰亚胺的衬底上制成的。是一种利用半导体单晶硅的压阻效应制成的一种敏感元件。
利用半导体单晶硅的压阻效应制成的一种敏感元件,又称半导体应变片。压阻效应是半导体晶体材料在某一方向受力产生变形时材料的电阻率发生变化的现象(见压阻式传感器)。半导体应变片需要粘贴在试件上测量试件应变或粘贴在弹性敏感元件上间接地感受被测外力。利用不同构形的弹性敏感元件可测量各种物体的应力、应变、压力、扭矩、加速度等机械量。半导体应变片与电阻应变片(见电阻应变片相比,具有灵敏系数高(约高 50~100倍)、机械滞后小、体积小、耗电少等优点。P型和N型硅的灵敏系数符号相反,适于接成电桥的相邻两臂测量同一应力。早期的半导体应变片采用机械加工、化学腐蚀等方法制成,称为体型半导体应变片。它的缺点是电阻和灵敏系数的温度系数大、非线性大和分散性大等。这曾限制了它的应用和发展。自70年代以来,随着半导体集成电路工艺的迅速发展,相继出现扩散型、外延型和薄膜型半导体应变片,上述缺点得到一定克服。半导体应变片主要应用于飞机、导弹、车辆、船舶、机床、桥梁等各种设备的机械量测量。
⑹ 压阻效应常用的半导体电阻材料为什么和什么
传感器简答复习题
填空题:
1. 传感器可分为物性型和结构型传感器,光敏电阻是物性型传感器,电容式加速度传感器是结构型传感器。
2. 传感器的输入输出特性指标可分为静态和动态两大类,线性度和灵敏度是传感器的静态指标,而频率响应是传感器的动态指标。
3. 导电材料的截面积尺寸发生变化后其电阻会发生变化,利用这一原理制成的传感器称为电阻应变式传感器,利用电磁感应效应、霍尔效应、磁阻效应可制成的传感器为磁电式传感器,可实现速度、位移等参数测量,而压阻式传感器则是利用了一些具有离子晶体电介质的压电效应,它的敏感的最基本的物理量也是力。
4. 光电效应分为外光电效应和内光电效应,其中,光敏电阻的原理是基于内光电效应。
5. 电容式传感器按结构特点可分为变阻距型、变面积型、变介质型三种。
6. 目前,压电式传感器的常用材料有压电晶体、压电陶瓷和高分子电致伸缩材料三类。压电材料的逆电压效应还可以用来产生超声波。
7. 压电陶瓷是人工制造的多晶体,是由无数细微的电畴组成,电畴具有自己自发的极化、方向,经过极化处理的压电式陶瓷具有压电效应。
8. 安热电偶本身结构划分有普通热电偶、铠装热电偶、薄膜热电偶。
9. 电阻应变片的温度补偿中,若采用电桥补偿法测量应变时,工作应变片粘贴在被测试件表面上,补偿应变片粘贴在与被测试件完全相同的补偿块上,且补偿应变片不承受应变。
10. 湿敏电阻是一种阻值随环境相对湿度变化而变化的敏感元件。
11. 测试系统的静态测试指标,主要有线性度、滞迟、重复性、分辨力、稳定性各种抗干扰稳定性等,通常用输入量输出量的对应关系来表征。
12. 热敏电阻的阻值与温度之间的关系称热敏电阻的热电特性,它是热敏电阻测温的基础。
一. 传感器的定义及组成框图
传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成
被测信号[敏感元件]——>[传感元件]——>[信号调节转换电路]
[辅助电路]
二. 传感器的线性度是怎样确定的,拟合刻度直线有几种方法
(1) 传感器标定曲线和拟定直线的最大偏差与满量程输出值的百分比叫传感器的线性度
(2) 拟合直线的常用求质:切线法,端基法,最小乘法
三. 什么是电磁感应效应,霍尔效应
W匝线圈在磁场中运动切割磁力线或线圈所在磁场的传递变化时,线圈中所产生的感应电动势e的大小决定于穿过线圈的磁通量Φ的变化率,
⑺ 压阻效应的优点
它有以下优点:
①灵敏度与精度高;
②易于小型化和集成化;
③结构简单、工作可靠,在几十万次疲劳试验后,性能保持不变;
④动态特性好,其响应频率为103~105Hz。
⑻ 压阻效应的定义
压阻效应的强弱可以用压阻系数π来表征。压阻系数π被定义为单位应力作用下电阻率的相对变化。压阻效应有各向异性特征,沿不同的方向施加应力和沿不同方向通过电流,其电阻率变化会不相同。譬如:在室温下测定N型硅时,沿(100)方向加应力,并沿此方向通电流的压阻系数π11=102.2×10-11m2/N;而沿(100)方向施加应力,再沿(010)方向通电流时,其压阻系数π12=53.7×10-11m2/N。此外,不同半导体材料的压阻系数也不同,如在与上述N型硅相同条件下测出N型锗的压阻系数分别为π11=5.2×10-11m2/N;π12=5.5×10-11m2/N。
压阻效应被用来制成各种压力、应力、应变、速度、加速度传感器,把力学量转换成电信号。例如:压阻加速度传感器是在其内腔的硅梁根部集成压阻桥(其布置与电桥相似),压阻桥的一端固定在传感器基座上,另一端挂悬着质量块。当传感器装在被测物体上随之运动时,传感器具有与被测件相同的加速度,质量块按牛顿定律(第二定律)产生力作用于硅梁上,形成应力,使电阻桥受应力作用而引起其电阻值变化。把输入与输出导线引出传感器,可得到相应的电压输出值。该电压输出值表征了物体的加速度。
⑼ 什么是巨压阻效应
压阻效应是用来描述材料在受到机械式应力下所产生的电阻变化。不同于压电效应,压阻效应只产生阻抗变化,并不会产生电荷。
凯尔文(Lord Kelvin)在西元1856年第一次发现金属的阻抗在施加机械性负荷时会产生改变。到了西元1954年,正当单晶硅逐渐成为类比及数位电路设计的材料的选择时,第一次在硅及锗中发现高度的压阻效应(Smith 1954)。
压阻性元件的感度可由其程度因子的表示:
其中 和 R 分别代表器件长度及阻抗的相对增量
[编辑] 金属中的压阻效应
在金属感知器中的压阻效应,纯粹是由于施加于其上的机械应力所产生感知器的几何形状改变所造成的,从这个几何上的压阻效应而衍生出程度因子(gauge factors) (Window 1992):
其中 代表与材料相关的泊松比。
尽管这个数值相对于其它材料的压阻效应来说是相当小,金属压阻器(即张力计)成功地在广泛应用领域中被使用着 (Window 1992))。
[编辑] 半导体中的压阻效应
半导体材料中的压阻效应远大于金属在几何上的压阻效应,在锗、多晶硅、非晶硅、碳化硅及单晶硅中都可发现压阻效应的存在。
[编辑] 硅中的压阻效应
硅的电阻变化不单是来自与应力有关的几何形变,而且也来自材料本身与应力相关的电阻,这使得其程度因子大于金属数百倍之多 (Smith 1954)。N型硅的电阻变化主要是由于其三个导带谷对的位移所造成不同迁移率的导带谷间的载子重新分布,进而使得电子在不同流动方向上的迁移率发生改变。其次是由于来自与导带谷形状的改变相关的等效质量(effective mass)的变化。在P型硅中,此现象变得更复杂,而且也导致等效质量改变及电洞转换。
压阻效应已经被广泛应用于各种半导体材料制作而成的感知器中,这些材料包括:锗、多晶硅、非晶硅及单晶硅。由于硅是现今在数位及类比集成电路(IC)的材料,以硅制作而成的压阻性元件的应用就变得非常有意义,这使得将应力感知器容易整合于双极性及互补式金氧半导体线路中,进而使得压阻效应被应用于广泛的商品化产品之中,如:压力感知器及加速度感知器。另一方面,也由于硅的压阻效应的显著,使得其它在单晶硅元件的研发方面无法忽略此效应的存在,例如,半导体霍耳感知器就必须采取某些方法,将来自外加机械应力的讯号贡献消除之后,才能达到其该具有的电流精确度。
[编辑] 压电阻器
压电阻器最基本压阻性元件,以压阻性材料制作而成的电阻,通常用于机械性应力的量测。
制作
许多不同种类的压阻性材料都可用来制作压电阻,最简单形式的硅压阻感知器是扩散电阻。此压电阻是以扩散的方式在P型(N型)的硅基板上制作具有两个接点的N型(P型)井所组成,由于这些元件的面电阻约在数百欧姆的范围,为了便于欧姆接触的制作,还必须在接点位置上额外扩散P+(N+)杂质于P型(N型)井中。
⑽ 什么是金属的电阻应变效应什么是压阻效应两者有何异同
从原理上讲,应变式压力传感器,是外界的压力(或拉力)引起应变材料的几何形状(长度或宽度)发生改变,进而导致材料的电阻发生变化。检测这个电阻变化量可以测得外力的大小。
压阻式压力传感器通常是半导体压敏材料。半导体压阻式传感器在受到外力后,自身的几何形状几乎没有什么改变,而是其晶格参数发生改变,影响到禁带宽度。禁带宽度哪怕是非常微小的改变,都会引起载流子密度很大的改变,这最终引起材料的电阻率发生改变。
可见两种材料虽然都对外力变化呈现出电阻的变化,但原理不同。另外,应变式材料对外力的敏感度远远低于半导体压阻材料,后者的灵敏度是前者的约100倍;应变材料特性受温度影响较小,而半导体压阻材料对温度敏感。
(10)什么是半导体材料的压阻效应扩展阅读:
当金属电阻丝受到轴向拉力时,其长度增加而横截面变小,引起电阻增加。反之,当它受到轴向压力时则导致电阻减小。电阻应变计与弹性敏感元件、补偿电阻一起可构成多种用途的电阻应变式传感器。
两种应变式力传感器均为一端固定,一端为自由的弹性敏感装置,当有力作用其上时,敏感装置受力发生蠕变。测量前平衡电桥的四组应变片已做调零处理。受力蠕变时平衡条件被破坏,使输出电压或电流产生跃变,其跃变值直接反映受力大小。
将传感器固定于被测体上,当被测体发生水平加速度α时,因惯性质量块将产生与加速度方向相反的力F,该力使支撑梁弯曲,梁的表面发生蠕变,致使组成平衡电桥的应变片阻值发生变化。结果同力传感器一样,使输出电压或电流产生跃变,其跃变值直接反映加速度的大小。