软磁复合材料特性曲线
❶ 什么是中间继电器
你这个问题蛮专业的,刚好有空,帮你找了些资料,看看你用得上不吧! 中间继版电器(intermediate relay):用于继电保护与权自动控制系统中,以增加触点的数量及容量。 它用于在控制电路中传递中间信号。中间继电器的结构和原理与交流接触器基本相同,与接触器的主要区别在于:接触器的主触头可以通过大电流,而中间继电器的触头只能通过小电流。所以,它只能用于控制电路中。 它一般是没有主触点的,因为过载能力比较小。所以它用的全部都是辅助触头,数量比较多。新国标对中间继电器的定义是K,老国标是KA。一般是直流电源供电。少数使用交流供电。 以上就是关于中间继电器方面的一些分享,希望对你有帮助!亲的认可是我的最大动力哦!
❷ 如何用abaqus进行复合材料压力容器封头建模
1.材料种类繁多因为导弹种类本身就繁多:洲际、中程、防空、潜地、液体推进剂的,固体推进剂的、太空的、低空的……卫星也各种各样,它们各有各的特点,各有各的需要,这就造成材料也五花八门,液体、固体、气体、黑色金属、有色金属、各种非金属、超塑材料、复合材料、粘接灌注材料等,有数千种,可以说是应有尽有。2.要求苛刻,保证其性能优越(1)抗高温,抗高压发动机推进剂药柱燃烧时,产生3000℃以上的高温,6Mpa的高压,瞬时产生2500℃的温差热冲击,其容器材料必须承受。(2)耐超低温用液体燃料液氮,液氧和液氟作推进剂的火箭,其液体贮存罐用材料应能承受数网络的高温。(3)抗腐蚀,抗烧蚀。(4)能承受大载荷,如潜地导弹,能承受巨大的水下载荷。(5)隐身性好,避免敌方雷达搜索。(6)抗干扰性强。(7)耐受恶劣的环境条件。(8)有良好的化学性能,物理性能,力学性能,工艺性能,使用性能,保证材料满足条件特殊要求。(9)对材料要进行拓宽研究,针对结构材料要拓宽到微观结构、晶粒度、夹杂等方面,对功能材料要拓宽到各种功能参数的灵敏度(包括特殊的环境下)如精密合金的导磁率,矫顽力,剩磁,电绝缘介质的电阻率,耐电压,损耗,介电常数等。(10)对特殊材料的要求按其特点逐一解决,如微波复合材料的透波性和吸收性,密封灌注材料的密封性,粘合剂的粘接强度等。三、航天用材料的测试如前所述,对航天用器件,设备的材料性能要求苛刻,为确保其性能符合要求,航天部曾专门下文件要求加强材料的复验工作,为此,航天部材料试验标准化技术委员会特组织专业技术人员制订了金属材料和非金属材料两项复验标准,对于材料生产厂和研究所出厂(所)合格的材料,航天系统还要进行复验,这就是说,国内外成百上千的厂家所使用的检验设备一般说来航天系统都要拥有,对于特殊研制的材料,还要研制特殊的测试设备,这就造成了航天系统材料测试设备庞杂,种类繁多,高精尖设备集中的局面,有些特殊测试设备只有航天系统使用,基于此,我们仅对材料的测试作一概括介绍。用作结构的材料,其化学性能,如材料的成份可在化学或光谱试验室用液相色谱法或红外光谱法等进行测定;力学性能如冲击韧性,断裂韧性可在力学性能试验室用万能材料试验机测定;物理性能如断口形貌,微观组织等可在金相试验室用显微镜等设备测定;用于航天器件控制作用的功能材料分别由相应的试验室测定,如软磁,硬磁,硅钢,电阻,双金属,膨胀,电绝缘等类材料在电磁性能试验室用电桥法,方圈法,冲击法,高阻计,高压装置,LCR仪等方法设备测定;橡胶、密封、灌注、粘合剂、石油等有机材料在有机材料试验室测定,用于微波频段的材料如雷达天线罩则要在微波试验室中在相应频段测定其介质损耗角正切值和介电常数……以上试验大都有国家标准,特殊的有航天行业标准,实施并不很困难,问题在于针对航天的特殊环境和条件使用的材料,如超高温、超低温、高压、腐蚀等苛刻恶劣甚至模拟火箭发射火焰中对材料的影响这些条件下的测试,这就要制作一系列庞大的设备,创造出所要的条件,周期很长,反复多次,测出材料对各种条件和环境下的承受能力和性能变化,只有这样,我们才能掌握材料的全面情况,使它们更安全可靠地用于航天。
❸ SMC软磁复合材料Somaloy 700的磁化曲线到哪里去找
这么专业的东东啊 看看专业书籍吧
❹ 软磁复合材料所用的铁粉可以用纳米级的吗
应该可以的,主要看能不能满足你的要求!
❺ 哪位懂的,帮我分析一下磁性材料与磁性复合材料的红外光谱线的特征
磁性材料,是古老而用途十分广泛的功能材料,而物质的磁性早在年以前就被人们所认识和应用,例如中国古代用天然磁铁作为指南针。现代磁性材料已经广泛的用在我们的生活之中,例如将永磁材料用作马达,应用于变压器中的铁心材料,作为存储器使用的磁光盘,计算机用磁记录软盘等。可以说,磁性材料与信息化、自动化、机电一体化、国防、国民经济的方方面面紧密相关。而通常认为,磁性材料是指由过度元素铁、钴、镍及其合金等能够直接或间接产生磁性的物质。实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同。根据物质在外磁场中表现出的特性,物质可分为五类:顺磁性物质,抗磁性物质,铁磁性物质,亚磁性物质,反磁性物质。 根据分子电流假说,物质在磁场中应该表现出大体相似的特性,但在此告诉我们物质在外磁场中的特性差别很大.这反映了分子电流假说的局限性。实际上,各种物质的微观结构是有差异的,这种物质结构的差异性是物质磁性差异的原因。 磁性材料的应用--变压器我们把顺磁性物质和抗磁性物质称为弱磁性物质,把铁磁性物质称为强磁性物质。通常所说的磁性材料是指强磁性物质。磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料。...
❻ 软磁材料的新软磁体
软磁铁氧体的特点是:饱和磁通密度低,磁导率低,居里温度低,中高频损耗低,成本低。前三个低是它的缺点,限制了它的使用范围,现在(21世纪初)正在努力改进。后两个低是它的优点,有利于进入高频市场,现在(21世纪初)正在努力扩展。
以100kHz,0.2T和100℃下的损耗为例,TDK公司的PC40为410mW/cm3,PC44为300mW/cm3,PC47为 250mW/cm3。TOKIN公司的BH1为250mW/cm3,损耗不断在下降。国内金宁生产的JP4E也达到300mW/cm3。
不断地提高工作频率,是另一个努力方向。TDK公司的PC50工作频率为500kHz至1MHz。FDK公司的7H20,TOKIN的B40也能在1MHz下工作。Philips公司的3F4,3F45,3F5工作频率都超过1MHz。国内金宁的JP5,天通的TP5A工作频率都达到 500kHz至1.5MHz。东磁的DMR1.2K的工作频率甚至超越3MHz,达到5.64MHz。
磁导率是软磁铁氧体的弱项。现在(21世纪初)国内生产的产品一般为10000左右。国外TDK公司的H5C5,Philips公司的3E9,分别达到30000和20000。
采用SHS法合成MnZn铁氧体材料的研究,值得注意。用这种方法的试验结果表明,可以大大降低铁氧体的制造能耗和成本。国内已有试验成功的报导。 铁基非晶合金在工频和中频领域,正在和硅钢竞争。铁基非晶合金和硅钢相比,有以下优缺点。
1)铁基非晶合金的饱和磁通密度Bs比硅钢低,但是,在同样的Bm下,铁基非晶合金的损耗比0.23mm厚的3%硅钢小。一般人认为损耗小的原因是铁基非晶合金带材厚度薄,电阻率高。这只是一个方面,更主要的原因是铁基非晶合金是非晶态,原子排列是随机的,不存在原子定向排列产生的磁晶各向异性,也不存在产生局部变形和成分偏移的晶粒边界。因此,妨碍畴壁运动和磁矩转动的能量壁垒非常小,具有前所未有的软磁性,所以磁导率高,矫顽力小,损耗低。
2)铁基非晶合金磁芯填充系数为0.84~0.86,与硅钢填充系数0.90~0.95相比,同样重量的铁基非晶合金磁芯体积比硅钢磁芯大。
3)铁基非晶合金磁芯的工作磁通密度为1.35T~1.40T,硅钢为1.6T~1.7T。铁基非晶合金工频变压器的重量是硅钢工频变压器的重量的130%左右。但是,即使重量重,对同样容量的工频变压器,磁芯采用铁基非晶合金的损耗,比采用硅钢的要低70%~80%。
4)假定工频变压器的负载损耗(铜损)都一样,负载率也都是50%。那么,要使硅钢工频变压器的铁损和铁基非晶合金工频变压器的一样,则硅钢变压器的重量是铁基非晶合金变压器的18倍。因此,国内一般人所认同的抛开变压器的损耗水平,笼统地谈论铁基非晶合金工频变压器的重量、成本和价格,是硅钢工频变压器的130%~150%,并不符合市场要求的性能价格比原则。国外提出两种比较的方法,一种是在同样损耗的条件下,求出两种工频变压器所用的铜铁材料重量和价格,进行比较。另一种方法是对铁基非晶合金工频变压器的损耗降低瓦数,折合成货币进行补偿。每瓦空载损耗折合成5~11美元,相当于人民币 42~92元。每瓦负载损耗折合成0.7~1.0美元,相当于人民币6~8.3元。例如一个50Hz,5kVA单相变压器用硅钢磁芯,报价为1700元/ 台;空载损耗28W,按60元人民币/W计,为1680元;负载损耗110W,按8元人民币/W计,为880元;则,总的评估价为4260元/台。用铁基非晶合金磁芯,报价为2500元/台;空载损耗6W,折合成人民币360元;负载损耗110W,折合成人民币880元,总的评估价为3740元/台。如果不考虑损耗,单计算报价,5kVA铁基非晶合金工频变压器为硅钢工频变压器的147%。如果考虑损耗,总的评估价为89%。
5)现在(21世纪初)测试工频电源变压器磁芯材料损耗,是在畸变小于2%的正弦波电压下进行的。而实际的工频电网畸变为5%。在这种情况下,铁基非晶合金损耗增加到106%,硅钢损耗增加到123%。如果在高次谐波大,畸变为75%的条件下(例如工频整流变压器),铁基非晶合金损耗增加到160%,硅钢损耗增加到300%以上。说明铁基非晶合金抗电源波形畸变能力比硅钢强。
6)铁基非晶合金的磁致伸缩系数大,是硅钢的3~5倍。因此,铁基非晶合金工频变压器的噪声为硅钢工频变压器噪声的120%,要大3~5dB。
7)现行市场上,铁基非晶合金带材价格是0.23mm3%取向硅钢的150%,是0.15mm3%取向硅钢(经过特殊处理)的40%左右。
8)铁基非晶合金退火温度比硅钢低,消耗能量小,而且铁基非晶合金磁芯一般由专门生产厂制造。硅钢磁芯一般由变压器生产厂制造。
根据以上比较,只要达到一定生产规模,铁基非晶合金在工频范围内的电子变压器中将取代部分硅钢市场。在400Hz至10kHz中频范围内,即使有新的硅钢品种出现,铁基非晶合金仍将会取代大部分0.15mm以下厚度的硅钢市场。
值得注意的是,日本正在大力开发FeMB系非晶合金和纳米晶合金,其Bs可达1.7~1.8T,而且损耗为现有FeSiB系非晶合金的50%以下,如果用于工频电子变压器,工作磁通密度达到1.5T以上,而损耗只有硅钢工频变压器的10%~15%,将是硅钢工频变压器的更有力的竞争者。日本预计在2005年就可以将FeMB系非晶合金工频变压器试制成功,并投入生产。
非晶纳米晶合金在中高频领域中,正在和软磁铁氧体竞争。在10kHz至50kHz电子变压器中,铁基纳米晶合金的工作磁通密度可达0.5T,损耗P0.5/20k≤25W/kg,因而,在大功率电子变压器中有明显的优势。在50kHz至100kHz电子变压器中,铁基纳米晶合金损耗P0.2 /100k为30~75W/kg,
铁基非晶合金P0.2/100k为30W/kg,可以取代部分铁氧体市场。
非晶纳米晶合金经过20多年的推广应用,已经证明其具有下述优点:
1)不存在时效稳定性问题,纳米晶合金在200℃以下,钴基非晶合金在100℃以下,经过长期使用,性能无显著变化;
2)温度稳定性比软磁铁氧体好,在-55℃至150℃范围内,磁性能变化5%~10%,而且可逆; 经过争论,现在(21世纪初)对磁粉芯等已经取得了一致认识,即认为它属于软磁复合材料。软磁复合材料是将磁性微粒均匀分散在非磁性物中形成的。与传统的金属软磁合金和铁氧体材料相比,它有很多独特的优点:磁性金属粒子分散在非导体物件中,可以减少高频涡流损耗,提高应用频率;既可以采取热压法加工成粉芯,也可以利用现在(21世纪初)的塑料工程技术,注塑制造成复杂形状的磁体;具有密度小,重量轻,生产效率高,成本低,产品重复性和一致性好等优点。缺点是由于磁性粒子之间被非磁性体分开,磁路隔断,磁导率现在(21世纪初)一般在100以内。不过,采用纳米技术和其他措施,国外已有磁导率超过1000的报导,最大可达6000。
软磁复合材料的磁导率受到很多因素的影响,如磁性粒子的成分,粒子的形状,尺寸,填充密度等。因此,根据工作频率可以进行调整。
磁粉芯是软磁复合材料的典型例子。现在(21世纪初)已在20kHz至100kHz甚至1MHz的电感器中取代了部分软磁铁氧体。例如铁硅铝磁粉芯,硅含量为 8.8%,铝为5.76%,剩余全为铁。粒度为90~45μm,45~32μm和32~30μm。用硅树脂作粘接剂,1%左右硬脂酸作润滑剂,在 2t/cm2压力下,制成13×8×5的环形磁芯,在氢气中用673°K,773°K,873°K退火,使磁导率达到100,300,600。在 100kHz下损耗低,已经代替软磁铁氧体和MPP磁粉芯用于电感器中。
已经有人对大功率电源的电感器用软磁复合材料——磁粉芯进行了开发研究。在20kHz以下,磁导率基本不变。在1.0T下,磁导率为100左右。50Hz~20kHz损耗小,可制成100kg重量以上的大型的磁芯,而且在20kHz下音频范围,噪声比环形铁氧体磁芯降低10dB。可以在大功率电源中代替硅钢和软磁铁氧体。
有人用钴/二氧化硅(Co/SiO2)纳米复合软磁材料制作不同于薄膜的大尺寸磁芯。钴粒子平均尺寸为30μm,填充度40%至90%,经过搅拌后,退火形成Co/SiO2纳米复合粉,然后压制成环形磁芯。磁导率在300MHz以下,都可达到16。镍锌铁氧体的磁导率为12,而且在100MHz 以后迅速下降。证明在高频和超高频下,软磁复合材料也可取代部分铁氧体市场。