聚合基复合材料界面特点
界面产物、断口微观形貌、界面结合状态(直接结合/溶解扩散/反应型/机械镶嵌)。
❷ 复合材料的界面定义是什么,包括哪些部分
复合材料的界面是指基体与增强物之间化学成分有显著变化的、构成彼此结合的、能起载荷传递作用的微小区域。
界面通常包含以下几个部分:
基体和增强物的部分原始接触面;
基体与增强物相互作用生成的反应产物,此产物与基体及增强物的接触面;
界面的效应
(1)传递效应 界面能传递力,即将外力传递给增强物,起到基体和增强物之间的桥梁作用。
(2)阻断效应 结合适当的界面有阻止裂纹扩展、中断材料破坏、减缓应力集中的作用。
(3)不连续效应 在界面上产生物理性能的不连续性和界面摩擦出现的现象,如抗电性、电感应性、磁性、耐热性、尺寸稳定性等。
(4)散射和吸收效应 光波、声波、热弹性波、冲击波等在界面产生散射和吸收,如透光性、隔热性、隔音性、耐机械冲击及耐热冲击性等。
(5)诱导效应 一种物质(通常是增强物)的表面结构使另一种(通常是聚合物基体)与之接触的物质的结构由于诱导作用而发生改变,由此产生一些现象,如强的弹性、低的膨胀性、耐冲击性和耐热性等
界面效应是任何一种单一材料所没有的特性,它对复合材料具有重要的作用。界面效应既与界面结合状态、形态和物理-化学性质有关,也与复合材料各组分的浸润性、相容性、扩散性等密切相关。
❸ 聚合物基复合材料的优缺点
聚合物基复合材料的优缺点如下:
优点:具有很高的拉伸强度,而且防专火、防霉、防蛀属、耐高温,电绝缘性能也非常出色。其化学稳定性良好,与其他所有化学药品和有机溶剂都不会发生化学反应。
缺点是:具有脆性、不耐磨、对人的皮肤有刺激性等。
(3)聚合基复合材料界面特点扩展阅读
高分子材料无所不在,广泛渗透于人类生活的各个方面,在人们生活中发挥着巨大的作用。前不久美国宇航局在费城召开的会议中指出,新材料的主要内容包括聚合物、复合材料、磁性材料、半导体材料、光学纤维和陶瓷。
这些材料中,除半导体材料外,均涉及高分子材料,可见高分子材料在当代及未来国际竞争中占有相当重要的地位。
❹ 复合材料界面效应有哪些 复合材料界面的形成有哪几个阶段提高界面结合强度的途径有哪些
答:复合材料界面效应有:1、传递效应:界面可将复合材料体系中基体承受的外力传递给增强相,起到基体和增强相之间的桥梁作用。2、阻断效应:基体和增强相之间结合力适当的界面有阻止裂纹扩展、减缓应力集中的作用。3、不连续效应:在界面上产生物理性能的不连续性和界面摩擦出现的现象,如抗电性、电感应性、磁性、耐热性和磁场尺寸稳定性等。4、散射和吸收效应:光波、声波、热弹性波、冲击波等在界面产生散射和吸收,如透光性、隔热性、隔音性、耐机械冲击性等。5、诱导效应:一种物质(通常是增强剂)的表面结构使另一种(通常是聚合物基体)与之接触的物质的结构由于诱导作用而发生改变,由此产生一些现象,如强弹性、低膨胀性、耐热性和冲击性等。
复合材料界面的形成有三个阶段:1、增强体表面预处理或改性阶段(减小增强体和基体表面张力差距)2、基体材料和增强材料之间的浸润、接触(界面形成与发展的关键阶段):接触——吸附与浸润——交互扩散——化学结合或物理结合3、液态或粘流态组分的固化过程,即凝固或化学反应(界面形成与发展的关键阶段)a、界面的固定b、界面的稳定
提高界面结合强度的途径有:1、反应结合: 在复合材料组分之间发生化学作用,在界面上形成共价键结合在理论上可获得最强的界面粘结能。2、溶解与浸润结合:界面润湿理论是基于液态树脂对增强材料表面的浸润亲和,即物理和化学吸附作用。液态树脂对纤维表面的良好浸润是十分重要的。浸润不良会在界面上产生空隙,导致界面缺陷和应力集中,使界面强度下降。良好的或完全浸润将使界面强度大大提高,甚至优于基体本身的内聚强度。3、机械结合: 当两个表面相互接触后,由于表面粗糙不平将发生机械互锁。 另一方面,尽管表面积随着粗糙度增大而增大,但其中有相当多的孔穴,粘稠的液体是无法流入的。无法流入液体的孔不仅造成界面脱粘的缺陷,而且也形成了应力集中点。4、上述三种形式的混合结合方式。
❺ 聚合物基复合材料的界面粘接性的主要影响因素有哪些
粘接性影响因抄素很多很多,单就某一种材料来说,界面粘接性主要影响因素有:表面清洁度,浸润性,粘接头结构设计(最大粘接面;应力均匀,避免应力集中),胶黏剂种类选择(硬对硬,韧对韧;极性对极性,耐水耐油耐温等)。
❻ 复合材料中的界面相有什么特点,起什么作用
复合材料界面是指复合材料的基体与增强材料之间化学成分有显著变化的、构成彼此结合的、能起载荷等传递作用的微小区域。目前的研究尚处于半定量和半经验的水平上。 最早复合材料界面曾被想像成是一层没有厚度的面(或称单分子层的面)。而事实上复合材料界面是一层具有一定厚度(纳米以上)、结构随基体和增强体而异、与基体有明显差别的新相——界面相(或称界面层)。因为增强体和基体互相接触时, 在一定条件的影响下,可能发生化学反应或物理化学作用,如两相间元素的互相扩散、溶解,从而产生不同于原来两相的新相;即使不发生反应、扩散、溶解,也会由于基体的固化、凝固所产生的内应力,或者由于组织结构的诱导效应,导致接近增强体的基体发生结构上的变化或堆砌密度上的变化,从而导致这个局部基体的性能不同于基体的本体性能,形成界面相。界面相也包括在增强体表面上预先涂覆的表面处理剂层和增强体经表面处理工艺而发生反应的表面层。因此,必须建立复合材料界面存在独立相的新概念。复合材料界面相的结构与性能对复合材料整体的性能影响大。为改善复合材料性能,必须考虑界面设计和控制。结构复合材料界面相存在的残应力,是由于基体的固化或凝固收缩和两相间热膨胀系数的失配而造成的。无论应力大小和方向,都会影响到复合材料受载时的行为,如造成复合材料拉伸和压缩性能的明显差异等。结构复合材料界面的作用,是在复合材料受到载荷时把基体上的应力传递到增强体上。这就需要界面相有 足够的粘接强度,而两相表面能够互相浸润是先决条件。但是界面层并不是粘接得越强越好,而是要有适当的粘接强度,因为界面相还有另一个作用是在一定应力条件下能够脱粘,同时使增强体在基体中拔出并互相发生摩擦。这种由脱粘而增大表面能所做的功、拔出功和摩擦功都提高了破坏功,有助于改善复合材料的破坏行为,即提高它的强度。至于功能复合材料界面相的作用,目前尚很少研究,但已有实验证实,界面相在功能复合材料中的作用也是重要的。 表征为了认识界面的作用,了解界面结构对材料整体性能的影响,必须先表征界面相的化学、物理结构,厚度和形貌,粘接强度和残余应力等,从而可以寻找它们与复合材料性能之间的关系。 界面相化学结构包括组成元素、价态及其分布。其表征可以借助许多固体物理用的先进仪器,如俄歇电子 谱(AES,SAM)、电子探针(EP)、X光电子能谱仪 (X PS)、扫描二次离子质谱仪(S SIMS)、电子能量损失谱仪(EELS,PEELS)、傅里叶红外光谱(FTIR)、显微 拉曼光谱(MRS)、扩展X射线吸收细微结构谱 (E XAFS)等。由于界面相有时仅为纳米级的微区,而且有的组成非常复杂(尤其是金属和陶瓷基复合材料), 因此迄今还不能说哪一种方法可以满意地给出有关复合材料界面相全部化学信息。这是因为这些方法有的束斑太大,远远超过界面微区的尺寸;有的仅能提供元素的信息而不能知道元素的价态;有的会对某些观察物造成 表面损伤等,存在着各式各样的局限性。所以仍需研究 合适的新方法,或几种方法的配合使用。 界面相形貌和厚度的表征也有不少方法,如透射电 镜(TEM)、扫描电镜(S EM)。新方法有角扫描X射线反射谱(GAXP),可以测定金属基和陶瓷基复合材料界 面相的厚度。但这些方法在测量上也有难度。 界面相粘接强度的表征基本上有5种方法,即单丝拔出法、埋入基体的单丝裂断长度法、微(单丝)压出 法、球形(或锥形)压头压痕法、常规三点弯剪法等。前两种方法只能表征单丝复合材料的行为;后3种虽是表 征复合材料,但又各有不足之处。而且各种方法测出 的数据相差甚远,以球形压痕法和三点弯剪法数值较高。目前尚难以决定何种方法是最为合适的。此外,还有用 动态力学法测定内耗值以表征界面结合状态的方法。界面湘残余应力的表征也很困难。对透明基体和不 透明基体都分别有其相应的方法,但是均不理想,同时 在计算处理上也较复杂。复合材料界面理论过去对于复合材料界面理论的 研究是试图提出一个能够适用于各种复合材料的理论,诸如化学反应理论、浸润理论、可形变层理论、约束层 理论、静电作用理论以及把一些理论结合起来的理论。但它们都有许多矛盾,常不能自圆其说。由于对界面认识的逐步深化,了解到界面相的复杂性与多重性是和原组成材料、加工工艺和使用环境密切有关。因此,理论研究转向针对某一具体体系,探讨界面微结构与宏观性能的关系,界面浸润过程和界面反应的热力学与动力学 关系,建立某种体系的界面相模型并作理论处理等。
❼ 在多组分聚合物体系中界面对材料的性能如何影响从聚合物基复合材料,共混物两个体系进行说明
多方面的一个事物,然后都是有的事物的一种总体能量,然后自己改变它的整体运行,来解决这个问题的