铝基碳化硅复合材料加工技术发展研究
主要研究方向包括:颗粒增强金属基复合材料制备技术、有色金属半固态加工技术、喷射成形技术、激光快速成形技术、快速凝固气雾化技术、超声雾化技术、快冷铸带技术、金属纳米制备技术等。
㈡ 碳化硅增强铝基复合材料做为摩擦材料配方
碳化硅颗粒增强铝基复合材料碳化硅和颗粒状的铝复合而成,其中碳化硅是用石英砂、石油回焦(或煤焦)、木答屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成,再和增强颗粒铝复合而成,增强颗粒铝在基体中的分布状态直接影响到铝基复合材料的综合性能,能否使增强颗粒均匀分散在熔液中是能否成功制备铝基复合材料的关键,也是制备颗粒增强铝基复合材料的难点所在。
㈢ 复合材料的机械加工特点有什么简单介绍
一、玻璃纤维复合材料
玻璃钢是玻璃纤维增强热固性树脂基复合材料的俗称,属难切削材料。玻璃钢有酚醛树脂基、环氧树脂基、不饱和聚酯树脂基等。玻璃纤维填料的主要成分是SiO2,坚硬耐磨,强度高,耐热,比木粉作填料的塑料可切性差。
树脂基体不同,可切削性也不相同。环氧树脂基比酚醛树脂基难切削。试验证明,切削玻璃钢的刀具材料以高速钢磨损最严重,P类及M类硬质合金磨损也大,以K类磨损最小。K类中又以含钴量最少的K10最耐磨损,而用金刚石或立方氮化硼刀具切削加工玻璃钢,可大大提高生产效率。选择刀具几何参数时,对玻璃纤维含量高的玻璃钢板材、模压材料和缠绕材料,使r0=20~25°;对纤维缠绕材料,使r0=20~30°。
由于玻璃钢回弹性较大,后角要选大值,使a0=8~14°;副偏角小些,可降低表面粗糙度,精车时为6~8°。加工易脱层、起毛的卷管和纤维缠绕玻璃钢,应采用6~15°刃倾角。切削时v=40~100m/min,f=0.1~0.5mm/r,aP=0.5~3.5mm,精车时aP=0.05~0.2mm。
二、热塑性树脂基复合材料
热塑性树脂基复合材料机械加工的基本加工特点是:
1)加工时加冷却剂,以避免过热,过热会使工件熔化;
2)采用高速切削;
3)切削刀具要有足够容量的排屑槽;
4)采用小的背吃刀量和小的进给量;
5)车刀应磨成一定的倾角,以尽量减少刀具切削力和推力;
6)热塑性复合材料钻孔应用麻花钻;
7)应采用碳化钨或金刚砂刀具,或用特殊的塑料用高速钢刀具;
8)工件必须适当支承(背部垫实),以避免切削压力造成的分层;
9)精密机械加工时,要考虑塑性记忆和加工车间的室温;
10)刀头和刀具要锋利,钝刀具会增加工件上的切削力。
三、金属基复合材料
金属基复合材料(MMC)的最大特点是成型性能好,一次成型后已基本能满足使用要求。但是随着复合材料应用领域的扩大,特别是MMC在工业及宇航领域中的应用,对这种材料的加工和精加工日趋重要。例如美国制造的大型SiC/Al板材,需采用喷水切割并用标准钢连接件固定在金属基复合材料梁上,战术导弹上用的体积百分比为25%SiC颗粒增强2124铝基复合材料的挤压毛坯必须采用金刚石刀具加工后才能应用,这样就相应产生了水切割、钻孔、车削等二次加工工艺。
传统的切割、车削、铣削、磨削等工艺一般都可用于MMC,但是刀具磨损较严重,往往随着增强材料体积分数和尺寸的增大而加剧。且大颗粒或纤维抵抗脱落的能力较强,因而刀具所受应力较强。因此,对于一些单纤维增强的MMC,往往必须用有金刚石尖或镶嵌有金刚石的刀具。对于短纤维或粒子复合材料,有时也采用碳化钨或高速钢工具。增强体的强度对刀具的磨损也有影响。一般增强体的强度越高,切削加工就越困难。研究发现,碳化硅晶须增强的铝基复合材料要比其它铝基复合材料难加工。对于多数MMC,使用锐利的刀具,合适的切削速度,大量的冷却/润滑剂和较大的进刀量,可以得到很好的效果。一般来说,金刚石刀具要比硬质合金及陶瓷刀具好,可更适用于高速车削。反过来,如果使用碳化物刀具,若车削速度低,则刀具寿命长。线锯也可用来割MMC,但一般速度较慢,只能切直线。
由于复合材料与传统材料有着不同的特点,所以复合材料的切削加工与金属材料有着本质的区别,因此不能将从加工传统材料中获得的经验和知识直接应用于复合材料的加工,必须通过新途径对其加工性能进行研究。
㈣ 铝基复合材料工业化应用需要解决哪些问题
成本,界面结合与界面反应问题,复合材料的可回收性,工艺再现性等。
㈤ 简述什么是复合材料及其未来研究方向
复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。
随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。
从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料用量到2003年估计可达10.5万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达7.5万吨,汽车等领域的用量仅为2.4万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。
另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。
㈥ 西北工业大学张立同院士获得了2004年国家技术发明一等奖,她与她的同事研制的碳化硅陶瓷基复合材料是一种
(1)由题意“它比铝还轻,比钢还强,比碳化硅陶瓷更耐高温、更抗氧回化烧蚀”,可答知这种新型材料的上述性能中,涉及的物理性质有密度小(或硬度大、熔点高);涉及的化学性质有具有抗氧化性(或具有热稳定性);
(2)在空气中,碳化硅能与熔融的氢氧化钠反应:SiC+2NaOH+2O2═Na2SiO3+X+H2O,根据质量守恒定律,反应前后元素种类不变,原子个数相同,则可计算其中X的化学式为CO2;已知钠元素的化合价为+1价,氧元素的化合价为-2价,根据化合价的原则,则可求Na2SiO3中硅元素的化合价为+4.
故答为:
(1)密度小(或硬度大、熔点高);具有抗氧化性(或具有热稳定性)(各填一个)
(2)CO2,+4
㈦ 谁家能加工铝基碳化硅
可以加工铝基碳化硅的厂不多,在国内也就十多家,铝基碳化硅它是一种复合材版料,它具有很高的强度权、高硬度、散热性能好、热膨胀系数低等优点,虽然铝基碳化硅的优点很多,但是加工起来是特别困难的,前段时间我们厂使用我们新研发的陶瓷专用雕铣机,进行试验,难度确实非常大,一不小心就会出现裂纹,崩边,工艺要求真是非常高,但是可以进行加工,打孔,开槽,甚至是攻牙,都能做,加工的效率虽说不高,但是跟一些所谓的国外的机床相比也差不太多。