粉末冶金技术难点
A. 粉末冶金的特点
粉末冶金具有独特的化学组成和机械、物理性能,而这些性能是用传统的熔铸方法无法获得的。运用粉末冶金技术可以直接制成多孔、半致密或全致密材料和制品,如含油轴承、齿轮、凸轮、导杆、刀具等,是一种少无切削工艺。
(1)粉末冶金技术可以最大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组织。在制备高性能稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、高温超导材料、新型金属材料(如Al-Li合金、耐热Al合金、超合金、粉末耐蚀不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的作用。
(2)可以制备非晶、微晶、准晶、纳米晶和超饱和固溶体等一系列高性能非平衡材料,这些材料具有优异的电学、磁学、光学和力学性能。
(3)可以容易地实现多种类型的复合,充分发挥各组元材料各自的特性,是一种低成本生产高性能金属基和陶瓷复合材料的工艺技术。
(4)可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料,多孔分离膜材料、高性能结构陶瓷磨具和功能陶瓷材料等。
(5)可以实现近净形成和自动化批量生产,从而,可以有效地降低生产的资源和能源消耗。
(6)可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一种可有效进行材料再生和综合利用的新技术。
我们常见的机加工刀具,五金磨具,很多就是粉末冶金技术制造的。
B. 粉末冶金的工艺流程
粉末冶金工艺的基本工序是:
1、原料粉末的制备。现有的制粉方法大体可分为两类:机械法和物理化学法。而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。其中应用最为广泛的是还原法、雾化法和电解法。
2、粉末成型为所需形状的坯块。成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。成型的方法基本上分为加压成型和无压成型。加压成型中应用最多的是模压成型。此外还可使用3D打印技术进行胚块的制作。
3、坯块的烧结。烧结是粉末冶金工艺中的关键性工序。成型后的压坯通过烧结使其得到所要求的最终物理机械性能。烧结又分为单元系烧结和多元系烧结。对于单元系和多元系的固相烧结,烧结温度比所用的金属及合金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分的熔点低,而高于易熔成分的熔点。除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。
4、产品的后序处理。烧结后的处理,可以根据产品要求的不同,采取多种方式。如精整、浸油、机加工、热处理及电镀。此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。
C. 什么是粉末冶金,技术含量有多高,核心技术是什么,掌握在那些公司手中
武汉钢铁公司有一粉末冶金公司,这是一个系统的学科,包含许多专业,大的钢铁集团都有专门的子公司.
D. 粉末冶金的原理
见http://..com/question/15384830.html
其实粉末冶金属于净成型工艺,可以采用任何可以生产的原料专通过模具压制烧结而成,快速属成型通过三维造型直接做出。
E. 粉末冶金技术优缺点
粉末冶金工艺的优点: 1、绝大多数难熔金属及其化合物、假合金、多孔材料只能用粉末冶金方法来制造。 2、由于粉末冶金方法能压制成最终尺寸的压坯,而不需要或很少需要随后的机械加工,故能大大节约金属,降低产品成本。用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。 3、由于粉末冶金工艺在材料生产过程中并不熔化材料,也就不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。 4、粉末冶金法能保证材料成分配比的正确性和均匀性。 5、粉末冶金适宜于生产同一形状而数量多的产品,特别是齿轮等加工费用高的产品,用粉末冶金法制造能大大降低生产成本。 粉末冶金工艺的基本工序是: 1、原料粉末的制备。现有的制粉方法大体可分为两类:机械法和物理化学法。而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。其中应用最为广泛的是还原法、雾化法和电解法。 2、粉末成型为所需形状的坯块。成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。成型的方法基本上分为加压成型和无压成型。加压成型中应用最多的是模压成型。 3、坯块的烧结。烧结是粉末冶金工艺中的关键性工序。成型后的压坯通过烧结使其得到所要求的最终物理机械性能。烧结又分为单元系烧结和多元系烧结。对于单元系和多元系的固相烧结,烧结温度比所用的金属及合金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分的熔点低,而高于易熔成分的熔点。除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。 4、产品的后序处理。烧结后的处理,可以根据产品要求的不同,采取多种方式。如精整、浸油、机加工、热处理及电镀。此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。 粉末冶金材料和制品的今后发展方向: 1、有代表性的铁基合金,将向大体积的精密制品,高质量的结构零部件发展。 2、制造具有均匀显微组织结构的、加工困难而完全致密的高性能合金。 3、用增强致密化过程来制造一般含有混合相组成的特殊合金。 4、制造非均匀材料、非晶态、微晶或者亚稳合金。 5、加工独特的和非一般形态或成分的复合零部件。
F. 金属粉末冶金制品工艺的优缺点有哪些
优点:
1、绝大多数难熔金属及其化合物、假合金、多孔材料只能用粉末冶金方法来制造。 2、由于粉末冶金方法能压制成最终尺寸的压坯,而不需要或很少需要随后的机械加工,故能大大节约金属,降低产品成本。用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。
3、由于粉末冶金工艺在材料生产过程中并不熔化材料,也就不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。
4、粉末冶金法能保证材料成分配比的正确性和均匀性。
5、粉末冶金适宜于生产同一形状而数量多的产品,特别是齿轮等加工费用高的产品,用粉末冶金法制造能大大降低生产成本。
缺点:
1、在没有批量的情况下要考虑 零件的大小.
2、模具费用相对来说要高出铸造模具.
粉末冶金(P/M)技术是一门重要的材料制备与成形技术,被称为是解决高科技、新材料问题的钥匙…。高性能、低成本、净近成形一直以来是粉末冶金工作者重要研究课题之一。粉末冶金法能实现工件的少切削、无切削加工,是一种高效、优质、精密、低耗节能制造零件的先进技术。进入20世纪80年代许多行业,特别是汽车工业比以往任何时候更加依赖于粉末冶金技术,尽可能多地采用粉末冶金高性能的零部件是提高汽车尤其是轿车在市场中的竞争能力的一种有力手段。高密度的P/M产品是保证其具有优异的力学性能的关键因素。因此,为扩大粉末冶金P/M零部件的应用范围,必须提高其密度以获得力学性能优异的粉末冶金零部件。
G. 什么是粉末冶金什么是粉末冶金技术是
烧结是一种零件来加工技源术,通过硬化金属粉末,在低于金属熔化温度的温度下烘烤,使"零件成型"的一种技术,这种工艺称为粉末冶金。硬化成型零件称为"烧结金属"或"烧结产品"。
烧结产品制造工艺如下:
原材料:烧结产品的主要原料包括铁、铜、铝、钛、镍、钨和氧化铝。大多数原料都可以应用,只要它是粉末。
混合:通过将镍和氧化铝添加到铁中,可以制造具有各种特性的成型制品。这些金属粉末使用搅拌机充分混合。
压缩成型:将金属粉末填充到模具中,进行压缩成型。从垂直方向以高压力压缩以增加密度和强度。烧结成型常用于复杂形状,但也受模具结构的限制。
烧结:压缩零件处于"脆弱"状态。就像饼干一样,很容易用手破解。通过加热使烧结产品具有强大的机械性能。烧结意味着"烘烤和结合",在烧结炉中在低于金属熔化温度(800至1300°C)的温度下烘烤。烧结炉内充满保护气体,防止成型制品氧化。烧结成型制品中的粉末颗粒通过熔融结合而变强。
后处理:为了进一步提高精度和强度,如有必要,进行加工和热处理。
详细介绍请参考原文:原文链接
H. 粉末冶金成型工序可能出现有问题及其解决办法
成型工序一般都是成熟工艺,出现意外都是制粉工序的原因,只要有万分之一的其它杂质,下一道工序就出问题.要结合化工工艺进行筛选,把多余的杂质去掉.
应该提问的再详细,以便于大家探讨.
发消息也可.
I. 粉末冶金技术的难点在哪
制粉、成形、烧结是粉末冶金基本工序。
要说难点在哪里,这个问题需要具体分析版。
例如以传统的粉权末冶金铁基零件——齿轮为例,很多时候对力学性能的要求不高,对尺寸精度要求很高,一般密度在6.9~7.1就可以了,对成形工艺要求不高,对烧结工艺要求高,防止烧结变形,可以添加Cu防烧结收缩。随着技术发展,对高性能粉末冶金铁基零件需求越来越高,这就必须要提高粉末压坯的密度,这对成形工艺提出了更高的要求,发展出温压、高速压制等技术,零件的密度可以达到7.2~7.4。要想进一步提高粉末冶金零件的机械性能,还需提高压坯密度,这就必须从粉末制备考虑,制粉技术和粉末预处理技术成为重点,现在采用优质水雾化铁粉,通过粉末塑化处理,压坯密度可以达到7.5以上,这是当今粉末冶金铁基零件的最高水平,在十年前是不可想象的。
其它的粉末冶金材料也是一样,可以说制粉、成形、烧结一个不可少。当然制粉方法有上百种,成形方法少说也有十数中,烧结方法也不少,最终原则是在满足要求的前提下采取最经济的方法。
J. 粉末冶金都有哪些特点
粉末冶金具有独特的化学组成和机械、物理性能,而这些性能是用传统的熔铸方法无法获得的。运用粉末冶金技术可以直接制成多孔、半致密或全致密材料和制品,如含油轴承、齿轮、凸轮、导杆、刀具等,是一种少无切削工艺。
(1)粉末冶金技术可以最大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组织。在制备高性能稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、高温超导材料、新型金属材料(如Al-Li合金、耐热Al合金、超合金、粉末耐蚀不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的作用。
(2)可以制备非晶、微晶、准晶、纳米晶和超饱和固溶体等一系列高性能非平衡材料,这些材料具有优异的电学、磁学、光学和力学性能。
(3)可以容易地实现多种类型的复合,充分发挥各组元材料各自的特性,是一种低成本生产高性能金属基和陶瓷复合材料的工艺技术。
(4)可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料,多孔分离膜材料、高性能结构陶瓷磨具和功能陶瓷材料等。
(5)可以实现近净形成和自动化批量生产,从而,可以有效地降低生产的资源和能源消耗。
(6)可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一种可有效进行材料再生和综合利用的新技术。
我们常见的机加工刀具,五金磨具,很多就是粉末冶金技术制造的。