当前位置:首页 » 粉末冶金 » 钛基硼化复合材料

钛基硼化复合材料

发布时间: 2021-03-08 22:09:39

A. 硼纤维铝复合材料怎么制备硼纤维

金属基复合材料一般都在高温下成形,因此要求作为增强材料的耐热性要高。在纤维增强金属中不能选用耐热性低的玻璃纤维和有机纤维,而主要使用硼纤维、碳纤维、碳化硅纤维和氧化铝纤维。基体金属用得较多的是铝、镁、钛及某些合金。

碳纤维是金属基复合材料中应用最广泛的增强材料碳纤维增强铝具有耐高温、耐热疲劳、耐紫外线和耐潮湿等性能,适合于在航空、航天领域中做飞机的结构材料。硼纤维增强铝也用于空间技术和军事方面。

碳化硅纤维增强铝比铝轻10%,强度高10%,刚性高一倍,具有更好的化学稳定性、耐热性和高温抗氧化性。它们主要用于汽车工业和飞机制造业。用碳化硅纤维增强钛做成的板材和管材已用来制造飞机垂尾、导弹壳体和空间部件。

B. 钛合金以及钛基复合材料是什么一般有什么用如何了解更多信息

ti的用途很广 ti-mmc前景是航空发动机压气机整体叶环结构bling (blade+ring)还没有实用

C. 什么是金属基复合材料

与非金属基复合材料相比,金属基复合材料的潜力尚未充分发挥,应用面比较窄,成熟的品种很少。这种情况一直到20世纪70年代中期才略有好转。1974年,美国材料咨询局第一次肯定了研制和使用金属基复合材料的正确性,表示对这项工作要重视和支持。这主要是航空、航天、能源工业的发展提出的一系列严格的要求,看来只有依赖金属基复合材料和精陶瓷才能够解决。金属基复合材料所用的增强剂除了石墨、硼(硼硅克)纤维外,还有高强度钢丝、高熔点合金丝(钨、钼)和晶须(氧化铝、碳化硅)等。这些纤维分别用来与铝、镁、钛、铜和镍钴基高温合金组成复合材料。

硼—铝复合材料的研制起步最早,取得了一定效果。这种材料用于航天飞机的中机身构架管,可减重80公斤。采用硼—铝复合材料的飞机为数不多,目前只有F—111、S—3A等,此外还有“阿特拉斯”导弹的壳体。

硼—铝复合材料最有希望的潜在用途是制造喷气发动机的压气机及风扇叶片,如用其代替钛合金可减重33%,节省成本45%左右。美国几家主要发动机公司如普拉特•惠特尼、通用电器、TRW等均进行过硼—铝复合材料风扇叶片的研究。JT8D发动机上试用硼—铝压气机叶片,工作温度达到300℃,此外,在TF—41—P3发动机上还试用了铍—铝压气机叶片。

石墨—铝复合材料也具有很高的比强度和比模量,适合直升机、导弹、坦克和突击浮桥使用。CH47直升机的传动机,采用了多层石墨—铝护板,大大减少了振动噪音,此外石墨—铝和石墨—镁将被用在人造卫星和大型空间结构上,如卫星支撑架、平面天线体、可折式抛物面天线助等。

镍基和钴基高温合金使用高熔点钼、钨丝式晶须增强后成为耐热复合材料。这项工作在许多国家开展多年,目的是为了满足工作温度和载荷日益提高的先进涡轮发动机的需要。利用这种耐热复合材料制成实心涡轮叶片,可以提高涡轮的温度和转数,减少涡轮级数和冷却气体的消耗,为改进发动机创造了条件。采用加有二氧化钍和碳化铪的钨丝增强复合材料,工作温度为1160~1200℃,至少比目前的涡轮工作温度提高100℃。

利用氧化铝晶须毡或单晶纤维增强熔点钼钨后,可以耐更高的温度,在1650℃时的强度为钨的两倍,作为火箭喷口材料已通过试验。

以钢板为基体的各种层压板也是一种通用的复合材料。例如波音767和757飞机上采用的一种包不锈钢铝板,可以代替钛合金作为发动机的防火材料,重量轻而价格低。

另一种是以钢板为基、多孔青铜的中间层、聚四氟乙烯塑料为表面层的三层复合材料,可用于制造载重汽车底盘衬套、机床导轨和在高温腐蚀介质中工作的轴承

超导电缆也是一种复合材料,它是以铜—锡合金为基体,埋人295根铌线后组成,经过扩散处理在界面形成七微米厚的Nb2Sn金属化合物,它具有超导性,可以用于制造磁悬浮高速列车、核聚变反应堆电磁铁、储能超导感应器、超导发电机等新产品。

D. 海绵钛是复合材料吗

考点名称:复合材料定义:人们将两种或两种以上的不同材料复合起来,使各种材料在性能上取长补短,制成了比原来单一材料的性能优越得多的复合材料。如钢筋混凝土、玻璃钢。 优点:复合材料集中了组成材料的优点,具有更优异的综合性能。复合材料既能充分利用资源,又能节约能源。如钢筋混凝土就是钢筋和混凝土的复合材料,机动车的轮胎是用合金钢与橡胶的复合材料制成的,快艇的船身、餐厅的桌椅是由塑料中嵌入玻璃纤维制成的玻璃纤维增强塑料(玻璃钢)制作的,飞机的机翼、火箭的发动机壳体是用碳纤维复合材料制成的。因此复合材料成为大有发展前途的一类新型材料。复合材料的应用前景:由于复合材料一般具有强度高、质量小、耐高温、耐腐蚀等优异性能,在综合性能上超过了单一材料,因此宇航工业就成了复合材料的重要应用领域。我们知道,质量对飞机、导弹、火箭、人造卫星、宇宙飞船来说是一个非常重要的冈素。例如:有的导弹的质量每减少1kg,它的射程就可以增加几千米。航天飞行器还要经受超高温、超高强度和温度剧烈变化等特殊条件的考验,所以,复合材料就成为理想的宇航材料,它的发展趋势从小部件扩大到大部件,从简单部件扩大到复杂部件,成为宇宙航空业发展的关键所在。另外,复合材料在机械工业、体育用品甚至人类健康方面的应用前景也十分广阔。复合材料的类别: (1)聚合物复合材料主要是指纤维增强聚合物材料。如将碳纤维包埋在环氧树脂中使复合材料强度增加,用于制造网球拍、高尔夫球杆和雪橇等。玻璃纤维复合材料是玻璃纤维与聚酯的复合体,可以用于制作结构材料,如汽车和飞机中的某些部件、桥体的结构材料和船体等,其强度可与钢材相比。增强的聚酰亚胺树脂可用于制作汽车的塑料发动机,使发动机质量减小,节约燃料。 (2)陶瓷基复合材料为改变陶瓷的脆性,将石墨或聚合物纤维包埋在陶瓷中,制成的复合材料有一定的韧性,不易碎裂。而且可以在极高的温度下使用。这类陶瓷基复合材料有望成为汽车、火箭发动机的新型结构材料。金属网陶瓷基材料具有超强刚性,可作为防弹衣的材料。 (3)金属基复合材料在金属表面涂层,可以保护金属表面或赋予金属表面某种特殊功能,如金属表面涂油漆可以抗腐蚀;金属表面作搪瓷内衬可制作化学反应釜;金属表面镀铬可使表面光亮;金属表面涂以高分子弹性体赋予表面韧性,可作为抗气蚀材料用于水轮机、汽轮机的不锈钢叶片上,延长其使用年限;在纯的硅晶片上复合多层有专门功能的物质可用于计算机的集成电路片。近年来出现的铝一硼纤维,其比强度为铝合金的2倍。

E. 钛合金属于金属材料,但它是复合材料吗是合成材料吗 (初中化学)

不是。
复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法内,在宏观上组成具有新性容能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。

合金,是由两种或两种以上的金属与非金属经一定方法所合成的具有金属特性的物质。一般通过熔合成均匀液体和凝固而得。根据组成元素的数目,可分为二元合金、三元合金和多元合金。

合成材料又称人造材料,是人为地把不同物质经化学方法或聚合作用加工而成的材料,其特质与原料不同,如塑料、玻璃、钢铁等。 塑料、合成纤维和合成橡胶。

F. 目前金属基复合材料的制备工艺主要有哪些

(一)粉末冶金复合法
粉末冶金复合法基本原理与常规的粉末冶金法相同,包括烧结成形法、烧结制坯加塑法加工成形法等适合于分散强化型复合材料(颗粒强化或纤维强化型复合材料)的制备与成型。粉末冶金复合法的工艺主要优点是:基体金属或合金的成分可自由选择,基体金属与强化颗粒之间不易发生反应;可自由选择强化颗粒的种类、尺寸,还可多种颗粒强化;强化颗粒添加量的范围大;较容易实现颗粒均匀化。缺点是:工艺复杂,成本高;制品形状、尺寸受限制;微细强化颗粒的均匀分散困难;颗粒与基体的界面不如铸造复合材料等。
(二)铸造凝固成型法
铸造凝固成型法是在基体金属处于熔融状态下进行复合。主要方法有搅拌铸造法、液相渗和法和共喷射沉积法等。铸造凝固成型铸造复合材料具有工艺简单化、制品质量好等特点,工业应用较广泛。
1、原生铸造复合法
原生铸造复合法(也称液相接触反应合成技术Liquid Contact Reaction:LCR)是将生产强化颗粒的原料加到熔融基体金属中,利用高温下的化学反应强化相,然后通过浇铸成形。这种工艺的特点是颗粒与基体材料之间的结合状态良好,颗粒细小(0.25~1.5μm),均匀弥散,含量可高达40%,故能获得高性能复合材料。常用的元素粉末有钛、碳、硼等,化合物粉末有Al2O3、TiO2、B2O3等。该方法可用于制备A1基、Mg基、Cu基、Ti基、Fe基、Ni基复合材料,强化相可以是硼化物、碳化物、氮化物等。
2、搅拌铸造法
搅拌铸造法也称掺和铸造法等,是在熔化金属中加入陶瓷颗粒,经均匀搅拌后浇入铸模中获得制品或二次加工坯料,此法易于实现能大批量生成,成本较低。该方法在铝基复合材料的制备方面应用较广,但其主要缺点是基体金属与强化颗粒的组合受限制。原因有两方面:①强化颗粒与熔体基本金属之间容易产生化学反应;②强化颗粒不易均匀分散在铝合金一类的合金熔体中,这是由于陶瓷颗粒与铝合金的润滑性较差,另一个问题是陶瓷颗粒容易与溶质原子一起在枝晶间产生偏析。
3、半固态复合铸造法
半固态复合铸造法是从半固态铸造法发展而来的。通常金属凝固时,初生晶以枝晶方式长大,固相率达0.2%左右时枝晶就形成连续网络骨架,失去宏观流动性。如果在液态金属从液相到固相冷却过程中进行强烈搅拌则使树枝晶网络骨架被打碎而保留分散的颗粒状组织形态,悬浮于剩余液相中,这种颗粒状非枝晶的微组织在固相率达0.5%~0.6%仍具有一定的流变性。液固相共存的半固态合金因具有流变性,可以进行流变铸造;半固态浆液同时具有触变性,可将流变铸锭重新加热到固、液相变点软化,由于压铸时浇口处及型壁的剪切作用,可恢复流变性而充满铸型。强化颗粒或短纤维强化材料加入到受强烈搅拌的半固态合金中,由于半固态浆液球状碎晶粒对添加颗粒的分散和捕捉作用,既防止颗粒的凝聚和偏析,又使颗粒在浆液中均匀分布,改善了润湿性并促进界面的结合。
4、含浸凝固法(MI技术)
含浸凝固法是一种将预先制备的含有较高孔隙率的强化相成形体含浸于熔融基体金属之中,让基体金属浸透预成型体后,使其凝固以制备复合材料的方法。有加压含浸和非加压含浸两种方法。含浸法适合于强化相与熔融基体金属之间润湿性很差的复合材料的制备。强化相含量可高达30%~80%;强化相与熔融金属之间的反应得到抑止,不易产生偏折。但用颗粒作强化相时,预成形体的制备较困难,通常采用晶须、短纤维制备预成形体。熔体金属不易浸透至预成形体的内部,大尺寸复合材料的制备较困难。
5、离心铸造法
广泛应用于空心件铸造成形的离心铸造法,可以通过两次铸造成型法成形双金属层状复合材料,此方法简单,具有成本低、铸件致密度高等优点,但是界面质量不易控制,难以形成连续长尺寸的复合材料。
6、加压凝固铸造法
该法是将金属液浇注铸型后,加压使金属液在压力下凝固。金属从液态到凝固均处于高压下,故能充分浸渗,补缩并防止产生气孔,得到致密铸件。铸、锻相结合的方法又称挤压铸造、液态模锻、锻铸法等。加压凝固铸造法可制备较复杂的MMCs零件,亦可局部增强。由于复合材料易在熔融状态下压力复合,故结合十分牢固,可获得力学性能很高的零件。这种高温下制成的复合坯,二次成型比较方便,可进行各种热处理,达到对材料的多种要求。
7、热浸镀与反向凝固法
热浸镀与反向凝固法都是用来制备连续长尺寸包覆材料的方法。热浸镀主要用于线材的连续镀层,主要控制通过镀层区的长度和芯线通过该区的速度等。反向凝固法是利用薄带作为母带,以一定的拉速穿过反向凝固器,由于母带的速度远远低于熔融金属的速度,在母带的表面附近形成足够大的过冷度,熔融金属以母带表面开始凝固生长,配置在反向凝固器上方的一对轧辊,同时起到拉坯平整和焊合的作用。
8、真空铸造法
真空铸造法是先将连续纤维缠绕在绕线机上,用聚甲丙烯酸等能分解的有机高分子化合物方法制成半固化带,把预成型体放入铸型中,加热到500℃使有机高分子分解。铸型的一端浸入基体金属液,另一端抽真空,将金属液吸入型腔浸透纤维。
(三)喷射成形法
喷射成形又称喷射沉积(Spray Forming),是用惰性气体将金属雾化成微小的液滴,并使之向一定方向喷射,在喷射途中与另一路由惰性气体送出的增强微细颗粒会合,共同喷射沉积在有水冷衬底的平台上,凝固成复合材料。凝固的过程比较复杂,与金属的雾化情况、沉积凝固条件或增强体的送入角有关,过早凝固不能复合,过迟的凝固则使增强体发生上浮下沉而分布不匀。这种方法的优点是工艺快速,金属大范围偏析和晶粒粗化可以得到抑制,避免复合材料发生界面反应,增强体分布均匀。缺点是出现原材料被气流带走和沉积在效应器壁上等现象而损失较大,还有复合材料气孔率以及容易出现的疏松。利用喷射成形原理制备工艺有添加法(inert spray form-ing)和反应法(reactive spray forming)两种。Osprey Metals研究的Osprey工艺是喷射成形法的代表,其强化颗粒与熔融金属接触时间短,界面反应得以有效抑制。反应喷射沉积法是使强化陶瓷颗粒在金属雾或基体中自动生成的方法。
(四)叠层复合法
叠层复合法是先将不同金属板用扩散结合方法复合,然后采用离子溅射或分子束外延方法交替地将不同金属或金属与陶瓷薄层叠合在一起构成金属基复合材料。这种复合材料性能很好,但工艺复杂难以实用化。目前这种材料的应用尚不广泛,过去主要少量应用或试用于航空、航天及其它军用设备上,现在正努力向民用方向转移,特别是在汽车工业上有很好的发展前景。
(五)原位生成复合法
原位生成复合法也称反应合成技术,金属基复合材料的反应合成法是指借助化学反应,在一定条件下在基体金属内原位生成一种或几种热力学稳定的增强相的一种复合方法。这种增强相一般为具有高硬度、高弹性模量和高温强度的陶瓷颗粒,即氧化物、碳化物、氯化物、硼化物、甚至硅化物,它们往往与传统的金属材料,如Al、Mg、Ti、Fe、Cu等金属及其合金,或(NiTi)(、AlTi)等金属间化合物复合,从而得到具有优良性能的结构材料或功能材料。
金属基复合材料的原位复合工艺基本上能克服其它工艺中常出现的一系列问题,如基体与增强体浸润不良、界面反应产生脆性、增强体分布不均匀、对微小的(亚微米和纳米级)增强体极难进行复合等。它作为一种具有突破性的新工艺方法而受到普遍的重视,其中包括直接氧化法、自蔓延法和原位共晶生长法等。
1、直接氧化(DIMON)法
直接氧化法是由氧化性气体在一定工艺条件下使金属合金液直接氧化形成复合材料。通常直接氧化法的温度比较高,添加适量的合金元素如Mg、Si等,可使反应速度加快。这类复合材料的强度、韧性取决于形成粒子的状态和最终显微组织形态。由于形成的增强体可以通过合金化及其反应热力学进行判断,因此可以通过合金化、炉内气氛的控制来制得不同类型增强体的复合材料。
2、放热弥散(XD)法
放热弥散复合技术(Exothermic Dispersion)的基本原理是将增强相反应物料与金属基粉末按一定的比例均匀混合,冷压或热压成型,制成坯块,以一定的加热速率加热,在一定的温度下(通常是高于基体的熔点而低于增强相的熔点)保温,使增强相各组分之间进行放热化学反应,生成增强相。增强相尺寸细小,呈弥散分布。XD技术具有很多优点:①可合成的增强相种类多,包括硼化物、碳化物、硅化物等;②增强相粒子的体积百分比可以通过控制增强相组分物料的比例和含量加以控制;③增强相粒子的大小可以通过调节加热温度加以控制;④可以制备各种MMC;⑤由于反应是在融熔状态下进行,可以进一步近终形成型。XD技术是合成颗粒增强金属基及金属间化合物基复合材料的最有效的工艺之一。但用XD工艺制成的产品存在着较大孔隙度的问题,目前一般采用在反应过程中直接压实来提高致密度。
3、 SHS-铸渗法
SHS-铸渗法是将金属基复合材料的自蔓延高温合成技术(Self-Propagating High Temperature Synthesis)和液态铸造法结合起来的一种新技术,包括增强颗粒的原位合成和铸造成型两个过程。当前,SHS-铸渗法是有竞争力的反应合成工艺之一,但过程控制非常困难。其典型工艺为:利用合金熔体的高温引燃铸型中的固体SHS系,通过控制反应物和生成物的位置,在铸件表面形成复合涂层,它可使SHS材料合成与致密化、铸件的成形与表面涂层的制备同时完成。
4、反应喷射沉积技术(RSD)
反应喷射沉积工艺(Reactive Spray Deposition)生成陶瓷颗粒的反应有气—液反应、液—液反应、固—液反应和加盐反应等多种类型。它综合了快速凝固及粉末冶金的优点,并克服了喷射共沉积工艺中存在的如颗粒与基体接近机械结合、增强相体积分数不能太高等缺点,成为目前金属基复合材料研究的重要方向之一。反应喷射沉积工艺过程为:金属液被雾化前喷入高活性的固体颗粒发生液固反应,导致喷入的颗粒在雾化过程中溶解并与基体中的一种或多种元素反应形成稳定的弥散相,控制喷雾的冷却速率以及随后坯件的冷却速率可以控制弥散相的尺寸。

G. 与其他基体的复合材料相比,为什么金属基体复合材料特别需要重视残余应力

复合材料按照基体分为金属基复合材料、无机非金属基复合材料和聚回合物基复合材料。聚答合物作为基体的包括不饱和聚酯树脂、环氧树脂、酚醛树脂及各种热塑性聚合物(PA、PC、PP、PE、PET、PBT等)。各种材料各有特点,比如热塑的,一般可以回收再利用,热固的一旦成型就无法再回收。还有其他的耐候性、耐温性、介电等级各不相同,要根据你所需要的选用。其他两类复合材料也是如此,比如金属基复合材料,航天、航空领域对比强度、比模量、尺寸稳定性有严格要求,因此多会选用密度小的轻金属合金作为基体。而高性能发动机使用的复合材料不仅需要具备高比强度、比模量,还对其耐热疲劳、耐氧化有要求,一般使用钛基、镍基合金以及金属间化合物做基体材料。普通汽车发动机则同时需要考虑低成本,量产性,可以用铝合金材料做基体。而工业集成电路基板和散热元件,必须具有高导热、低膨胀特性,一般使用铜、铝等作为基体。无机非金属基复合材料的基体材料主要包括水泥、陶瓷、石膏和水玻璃等。其中,以陶瓷基、水泥基复合材料的研究最为活跃。

热点内容
三个字的电影名 发布:2024-08-19 09:10:03 浏览:417
台湾红羊经典电影 发布:2024-08-19 09:02:17 浏览:767
搞笑电影范冰冰梁家辉开战 发布:2024-08-19 08:53:18 浏览:917
免费午夜激情 发布:2024-08-19 08:42:15 浏览:831
40分钟左右的英语电影 发布:2024-08-19 08:28:43 浏览:695
电影宋基美娜 发布:2024-08-19 08:27:04 浏览:942
宿舍都变成女的的电影 发布:2024-08-19 07:59:35 浏览:897
台湾恐怖片丧尸 发布:2024-08-19 07:57:21 浏览:179
免费观看qq群 发布:2024-08-19 07:53:00 浏览:921
4级片名字 发布:2024-08-19 07:39:14 浏览:553