cc复合材料表面
Ⅰ 求助复合材料表面处理工艺
表面处理~~太广泛了吧,表面氧化处理、表面离子注入处理、表面合金化处理、表面沉积处理、表面电镀、化学镀处理。。。。。。
不知道楼主说的是哪一种,
还是就想研究表面处理技术,其实这方面的专业书籍很多了,
Ⅱ 碳/碳复合材料表面如何防潮
碳/碳复合材料本身不吸水,不溶水,需要防潮是什么意思
Ⅲ 复合材料表面怎么掺杂金属离子
你说的可能是复合材料表面喷涂了闪光漆,漆膜成型后,漆膜内有细小的类似金属片的反光物。
也可在漆或胶衣使用前,添加微量你所需要的金属粉末,
Ⅳ 用于复合材料的碳纤维,表面改性的方法有哪些
一、清洗将碳纤维放入装有丙酮的索氏提取器中,在温度为60~100℃的条件下使用丙酮抽提,清除碳纤维表面的上浆剂以及杂质,清洗后的碳纤维在60~80℃的鼓风干燥箱中干燥,得到清洗过的碳纤维;二、氧化(1)将步骤一得到的干燥清洗过的碳纤维置于圆底烧瓶中,加入浓酸中,60~80℃下氧化2~5h;(2)将步骤二(1)得到的氧化后的碳纤维在蒸馏水中浸泡5~10min,然后将经蒸馏水中浸泡后的碳纤维取出,弃除蒸馏水;(3)重复步骤二(2)5~10次,得到清洗后的氧化碳纤维,在60~80℃的鼓风干燥箱中烘干;三、酰氯化(1)将步骤二(3)得到的氧化碳纤维置于单口瓶中,加入SOCl2和DMF的混合溶液中,加热至70~80℃恒温反应24~48h,得到含有杂质的酰氯化的碳纤维;(2)使用减压蒸馏的方法将步骤三(1)得到含有杂质的酰氯化的碳纤维中残留的二氯亚砜除去,得到酰氯化的碳纤维,然后将得到的酰氯化的碳纤维在温度为60~100℃的鼓风干燥箱中干燥2~5h,最后将干燥的酰氯化的碳纤维放在干燥器内密封保存;四、接枝双(3‑氨基苯基)苯基氧化膦将双(3‑氨基苯基)苯基氧化膦加入装有DMF溶剂的单口瓶中,双(3‑氨基苯基)苯基氧化膦与DMF质量比为0.3~0.6:88,加热至60~80℃,双(3‑氨基苯基)苯基氧化膦与DMF溶解后,将步骤三(2)得到的酰氯化的碳纤维置于单口瓶中,加热到80~120℃,反应时间为12~48h,得到接枝双(3‑氨基苯基)苯基氧化膦的碳纤维。
Ⅳ 复合材料界面效应有哪些 复合材料界面的形成有哪几个阶段提高界面结合强度的途径有哪些
答:复合材料界面效应有:1、传递效应:界面可将复合材料体系中基体承受的外力传递给增强相,起到基体和增强相之间的桥梁作用。2、阻断效应:基体和增强相之间结合力适当的界面有阻止裂纹扩展、减缓应力集中的作用。3、不连续效应:在界面上产生物理性能的不连续性和界面摩擦出现的现象,如抗电性、电感应性、磁性、耐热性和磁场尺寸稳定性等。4、散射和吸收效应:光波、声波、热弹性波、冲击波等在界面产生散射和吸收,如透光性、隔热性、隔音性、耐机械冲击性等。5、诱导效应:一种物质(通常是增强剂)的表面结构使另一种(通常是聚合物基体)与之接触的物质的结构由于诱导作用而发生改变,由此产生一些现象,如强弹性、低膨胀性、耐热性和冲击性等。
复合材料界面的形成有三个阶段:1、增强体表面预处理或改性阶段(减小增强体和基体表面张力差距)2、基体材料和增强材料之间的浸润、接触(界面形成与发展的关键阶段):接触——吸附与浸润——交互扩散——化学结合或物理结合3、液态或粘流态组分的固化过程,即凝固或化学反应(界面形成与发展的关键阶段)a、界面的固定b、界面的稳定
提高界面结合强度的途径有:1、反应结合: 在复合材料组分之间发生化学作用,在界面上形成共价键结合在理论上可获得最强的界面粘结能。2、溶解与浸润结合:界面润湿理论是基于液态树脂对增强材料表面的浸润亲和,即物理和化学吸附作用。液态树脂对纤维表面的良好浸润是十分重要的。浸润不良会在界面上产生空隙,导致界面缺陷和应力集中,使界面强度下降。良好的或完全浸润将使界面强度大大提高,甚至优于基体本身的内聚强度。3、机械结合: 当两个表面相互接触后,由于表面粗糙不平将发生机械互锁。 另一方面,尽管表面积随着粗糙度增大而增大,但其中有相当多的孔穴,粘稠的液体是无法流入的。无法流入液体的孔不仅造成界面脱粘的缺陷,而且也形成了应力集中点。4、上述三种形式的混合结合方式。
Ⅵ 想看到复合材料内颗粒的分散情况,扫描电镜扫描复合材料,对复合材料表面颜色有没有要求
如果看颗粒分散,最好观察新鲜断口或新鲜表面!扫描电镜成像是单色灰度图像,表面是否有颜色不影响对形貌的判断。
Ⅶ 复合材料中的界面相有什么特点,起什么作用
复合材料界面是指复合材料的基体与增强材料之间化学成分有显著变化的、构成彼此结合的、能起载荷等传递作用的微小区域。目前的研究尚处于半定量和半经验的水平上。 最早复合材料界面曾被想像成是一层没有厚度的面(或称单分子层的面)。而事实上复合材料界面是一层具有一定厚度(纳米以上)、结构随基体和增强体而异、与基体有明显差别的新相——界面相(或称界面层)。因为增强体和基体互相接触时, 在一定条件的影响下,可能发生化学反应或物理化学作用,如两相间元素的互相扩散、溶解,从而产生不同于原来两相的新相;即使不发生反应、扩散、溶解,也会由于基体的固化、凝固所产生的内应力,或者由于组织结构的诱导效应,导致接近增强体的基体发生结构上的变化或堆砌密度上的变化,从而导致这个局部基体的性能不同于基体的本体性能,形成界面相。界面相也包括在增强体表面上预先涂覆的表面处理剂层和增强体经表面处理工艺而发生反应的表面层。因此,必须建立复合材料界面存在独立相的新概念。复合材料界面相的结构与性能对复合材料整体的性能影响大。为改善复合材料性能,必须考虑界面设计和控制。结构复合材料界面相存在的残应力,是由于基体的固化或凝固收缩和两相间热膨胀系数的失配而造成的。无论应力大小和方向,都会影响到复合材料受载时的行为,如造成复合材料拉伸和压缩性能的明显差异等。结构复合材料界面的作用,是在复合材料受到载荷时把基体上的应力传递到增强体上。这就需要界面相有 足够的粘接强度,而两相表面能够互相浸润是先决条件。但是界面层并不是粘接得越强越好,而是要有适当的粘接强度,因为界面相还有另一个作用是在一定应力条件下能够脱粘,同时使增强体在基体中拔出并互相发生摩擦。这种由脱粘而增大表面能所做的功、拔出功和摩擦功都提高了破坏功,有助于改善复合材料的破坏行为,即提高它的强度。至于功能复合材料界面相的作用,目前尚很少研究,但已有实验证实,界面相在功能复合材料中的作用也是重要的。 表征为了认识界面的作用,了解界面结构对材料整体性能的影响,必须先表征界面相的化学、物理结构,厚度和形貌,粘接强度和残余应力等,从而可以寻找它们与复合材料性能之间的关系。 界面相化学结构包括组成元素、价态及其分布。其表征可以借助许多固体物理用的先进仪器,如俄歇电子 谱(AES,SAM)、电子探针(EP)、X光电子能谱仪 (X PS)、扫描二次离子质谱仪(S SIMS)、电子能量损失谱仪(EELS,PEELS)、傅里叶红外光谱(FTIR)、显微 拉曼光谱(MRS)、扩展X射线吸收细微结构谱 (E XAFS)等。由于界面相有时仅为纳米级的微区,而且有的组成非常复杂(尤其是金属和陶瓷基复合材料), 因此迄今还不能说哪一种方法可以满意地给出有关复合材料界面相全部化学信息。这是因为这些方法有的束斑太大,远远超过界面微区的尺寸;有的仅能提供元素的信息而不能知道元素的价态;有的会对某些观察物造成 表面损伤等,存在着各式各样的局限性。所以仍需研究 合适的新方法,或几种方法的配合使用。 界面相形貌和厚度的表征也有不少方法,如透射电 镜(TEM)、扫描电镜(S EM)。新方法有角扫描X射线反射谱(GAXP),可以测定金属基和陶瓷基复合材料界 面相的厚度。但这些方法在测量上也有难度。 界面相粘接强度的表征基本上有5种方法,即单丝拔出法、埋入基体的单丝裂断长度法、微(单丝)压出 法、球形(或锥形)压头压痕法、常规三点弯剪法等。前两种方法只能表征单丝复合材料的行为;后3种虽是表 征复合材料,但又各有不足之处。而且各种方法测出 的数据相差甚远,以球形压痕法和三点弯剪法数值较高。目前尚难以决定何种方法是最为合适的。此外,还有用 动态力学法测定内耗值以表征界面结合状态的方法。界面湘残余应力的表征也很困难。对透明基体和不 透明基体都分别有其相应的方法,但是均不理想,同时 在计算处理上也较复杂。复合材料界面理论过去对于复合材料界面理论的 研究是试图提出一个能够适用于各种复合材料的理论,诸如化学反应理论、浸润理论、可形变层理论、约束层 理论、静电作用理论以及把一些理论结合起来的理论。但它们都有许多矛盾,常不能自圆其说。由于对界面认识的逐步深化,了解到界面相的复杂性与多重性是和原组成材料、加工工艺和使用环境密切有关。因此,理论研究转向针对某一具体体系,探讨界面微结构与宏观性能的关系,界面浸润过程和界面反应的热力学与动力学 关系,建立某种体系的界面相模型并作理论处理等。
Ⅷ 复合材料的界面性质影响材料的那些性能
复合材料的界面会影响材料的传递性、阻断性、诱导性等等。
今天卡本来说一说复合材料的界面。
按照有些人的话来说,复合材料的界面是指基体与增强物之间化学成分有显著变化的、构成彼此结合的、能起载荷传递作用的微小区域。
所以界面作为复合材料的重要组成部分,它性质的改变注定会影响到材料的性能。
我们都知道,复合材料存在5个界面效应:
(1)传递效应:界面可以将复合材料体系中基体承受的外力传递给增强相,起到二者之间的桥梁作用。
(2)阻断效应:基体和增强相之间结合力适当的界面有阻止裂纹扩展、减缓应力集中的作用。
(3)不连续效应:在界面上产生物理性能的不连续性和界面摩擦出现的现象等等。
(4)散射和吸收效应:光波、声波等在界面会产生散射和吸收
(5)诱导效应:一种物质的表面结构使另一种与之接触的物质结构由于诱导发生改变,从而产生一些现象,比如,耐热性、强弹性等等。
那么如果界面的性质发生改变,具有这些效应的复合材料性能必将大打折扣。比如界面无法准确将外力传递给增强相,那么势必会减弱它“桥梁”的功能。更不用提它诱导效应产生的弹性、耐热性了。
望采纳~