金属纤维复合材料具有磁学
A. 纤维增强陶瓷复合材料的优点有哪些
纤维增强复合材料
由增强纤维和基体组成。纤维(或晶须)的直径很小,一般在l0μm以下,缺陷较少又小,断裂应变不大于百分之三,是脆性材料。容易损伤、断裂和受到腐蚀。
基体相对于纤维来说强度和模量要低得多但可经受较大的应变往往具有粘弹性和弹塑性是韧性材料。
纤维增强复合材料由纤维的长短可分为短纤维增强复合材料、长纤维复合材料和杂乱短纤维增强复合材料。纤维增强复合材料由于纤维和基体的不同品种很多如碳纤维增强环氧、硼纤维增强环氧、Kevlar纤维增强环氧、Kevlar纤维增强橡胶、玻璃纤维增强塑料、硼纤维增强铝、石墨纤维增强铝、碳纤维增强陶瓷、碳纤维增强碳和玻璃纤维增强水泥等。
纤维增强复合材料的性能体现在以下方面:
比强度高比刚度大成型工艺好材料性能可以设计抗疲劳性能好。破损安全性能好。多数增强纤维拉伸时的断裂应变很小、叠层复合材料的层间剪切强度和层间拉伸强度很低、影响复合材料性能的因素很多会引起复合材料性能的较大变化、用硼纤维、碳纤维和碳化硅纤维等高性能纤维制成的树脂基复合材料虽然某些性能很好但价格昂贵、纤维增强复合材料与传统的金属材料相比具有较高的强度和模量较低的密度、纤维增强复合材料还具有独特的高阻尼性能因而能较好地吸收振动能量同时减少对相邻结构件的影响
颗粒增强复合材料
颗粒增强体是用以改善复合材料的力学性能,提高断裂功、耐磨性、硬度,增进耐蚀性的颗粒状材料。如SiC、TiC、B4C、WC、Al2O3、MoS2、Si3N4、TiB2、BN、C、石墨~~~等
颗粒增强金属基复合材料由于制备工艺简单、成本较低微观组织均匀、材料性能各向同性且可以采用传统的金属加工工艺进行二次加工等优点,已经成为金属基复合材料领域最重要的研究方向。颗粒增强金属基复合材料的主要基体有铝、镁钛、铜和铁等,其中铝基复合材料发展最快;而镁的密度更低,有更高的比强度、比刚度,而且具有良好的阻尼性能和电磁屏蔽等性能,镁基复合材料正成为继铝基之后的又一具有竞争力的轻金属基复合材料。镁基复合材料因其密度小,且比镁合金具有更高的比强度、比刚度、耐磨性和耐高温性能,受到航空航天、汽车、机械及电子等高技术领域的重视。颗粒增强镁基复合材料与连续纤维增强、非连续
(短纤维、晶须等)纤维增强镁基复合材料相比,具有力学性能呈各向同性、制备工艺简单、增强体价格低廉、易成型、易机械加工等特点,是目前最有可能实现低成本、规模化商业生产的镁基复合材料
B. 金属基复合材料的性能有什么特点,其应用如何
复合材料中以纤维增强材料应用最广、用量最大。其特点是比重小、比强度和专比模量大。例属如碳纤维与环氧树脂复合的材料,其比强度和比模量均比钢和铝合金大数倍,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。石墨纤维与树脂复合可得到热膨胀系数几乎等于零的材料。纤维增强材料的另一个特点是各向异性,因此可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500℃时仍能保持足够的强度和模量。碳化硅纤维与钛复合,不但钛的耐热性提高,且耐磨损,可用作发动机风扇叶片。碳化硅纤维与陶瓷复合, 使用温度可达1500℃,比超合金涡轮叶片的使用温度(1100℃)高得多。碳纤维增强碳、石墨纤维增强碳或石墨纤维增强石墨,构成耐烧蚀材料,已用于航天器、火箭导弹和原子能反应堆中。非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。
C. 什么是复合材料,复合材料是如何分类的
复合材料是人们运用先进的材料制备技术将不同性质的材料组分优化组合而成的新材料。
复合材料主要可分为结构复合材料和功能复合材料两大类。
结构复合材料是作为承力结构使用的材料,基本上由能承受载荷的增强体组元与能连接增强体成为整体材料同时又起传递力作用的基体组元构成。
功能复合材料一般由功能体组元和基体组元组成,基体不仅起到构成整体的作用,而且能产生协同或加强功能的作用。功能复合材料是指除机械性能以外而提供其他物理性能的复合材料。
(3)金属纤维复合材料具有磁学扩展阅读
复合材料中以纤维增强材料应用最广、用量最大。其特点是比重小、比强度和比模量大。例如碳纤维与环氧树脂复合的材料,其比强度和比模量均比钢和铝合金大数倍,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。
由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。
D. 什么是纤维增强金属复合材料
纤维增强复金属复合材料制,是以金属为基体的一种新型复合材料,所以也称为金属基复合材料。
由于金属材料本身具有较高的强度和抗氧化性,因而其增强纤维的性能应大大超出金属基体才能发挥复合材料的优越性。能满足这种要求的纤维,现在仅有硼纤维、碳化硅纤维、晶须和金属丝等。
E. 纤维复合材料有什么区别
合成材料:又称人造材料,是人为地把不同物质经化学方法或聚合作用加工而成的材料回.
典型的产品有塑料答、合成化学品、树脂等。
复合材料:是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。
各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。
F. 什么是纤维增强金属基复合材料
金属基复合材料
6.1金属基复合材料的种类和基本性能
6.1.1金属基复合材料的种类
1.按基本分类
(1)铝基复合材料:良好的塑性和韧性,易加工性、工程可靠性及价格低廉等
(2)镍基复合材料:高温性能优良,有望成为燃汽轮机的叶片
(3)钛基复合材料:高比强度,中温强度较铝基好,超音速战斗机中用钛合金做蒙皮,主要与硼纤维结合增强
(4)镁基复合材料:比铝基更轻,集超轻,高比强度,高比刚度于一体,是航空航天材料的优选材料(dmg=1.74, dAl=2.7)
还有锌基、铜基、耐热金属基、金属间化合物基等复合材料
2.按增强材料分类
(1)颗粒增强复合材料:增强相超过20%的弥散强化类型,其强度取决于颗粒的直径、间距和体积比
(2)层状复合材料:与纤维增强相比,它在平面各个方面上是增强的(二维增强,而不是一维增强)
(3)纤维增强复合材料:有长纤,短纤和晶须三种纤维,长纤亦可以一维纤维,二维布和三维网的方式存在。长纤维在基本中必须定向规整地存在,而短纤和晶须则是随机任意不定向存在。
6.1.2金属基复合材料中增强体的性质
金属基复合材料的增强体主要是无机物和金属。无机纤维有C纤维、B纤维、SiC, Al2O3、Si3N4纤维等。金属纤维主要有铍、钢、不锈钢和钨纤维等。增强颗粒主要是无机非金属颗粒,包括石墨、SiC, Al2O3、Si3N4、TiC、B3C3等。主要讲述纤维增强体。
纤维增强体的基本要求:
A高强度,
B高模量,
C容易制造和价格低廉,
D化学稳定性好,
E纤维的尺寸和形状: 大直径圆纤维为好,
F性能的再现性与一致性,
G抗损伤或抗磨损性能
6.1.3金属基复合材料的强度
纤维增强金属基复合材料的纵向强度和横向强度是不同的。
1. 纵向强度(图6-1,P127)
临界纤维体积比VF*
当弱纤维断裂时,将引起三种重要的变化。1)由于破断纤维失去强度,而使该处截面上的强度降低。2)破断纤维裂纹周围的静应力集中会降低材料的有效强度。3)破断纤维失去载荷时产生的动应力波会使复合材料受到冲击,从而降低该处横断面上的瞬时承载能力。
2. 横向强度
复合材料的横向模量随着增强材料的含量增加是增加的,但强度的变化是复杂的。因为材料总是在局部断裂,这并不是平均强度可以衡量的,但总体上基本受纤维严重束缚,其断裂强度理应比纯基体材料大。
6.1.4复合材料组分的相容性
包括物理相容性和化学相容性,物理相容性和压力变化、热变化时材料的伸缩性能有关,相容性的要求是外部载荷能通过基本均匀传递到增强物上,基体上的应力不会增强体的局部过于集中化学相容性则与界面结合、界面化学反应及环境的化学反应有关。
6.2金属基复合材料的制造工艺
虽然该类复合材料的工艺很多,大致有:粉末冶金法、热压法、热等静压法、挤压铸造法、共喷沉积法、液态金属浸润法、液态金属搅拌法、反应自生法等等,这些方法大多也尚在不断发展之中,但其基本制造方法可归纳成几个大类:固态法、液态法和自生成法及其它制备方法。
6.2.1固态法
基体和增强物均为固态。粉末冶金法、热压法、热等静压法等包括在此类。
6.2.2液态金属法
基体处于液态时与增强物复合的方法
6.2.3自生成法和其它方法
在基体内部通过反应生成增强物质的方法
其它方法:如复合涂(镀)法,将增强物细粒悬浮于镀液中用电镀或化学镀形成复合层。
6.3铝基复合材料
6.3.1颗粒(晶须)增强铝基复合材料
增强材料晶须有:SiC,Al2O3,SiO2,BC4,TiC
性能:性能优异,增强颗粒价格低廉,应用前景广阔,如SiC增强者:有良好的力学性能和耐磨性,拉伸强度和弹性模量都比基体高,且颗粒粒径越小,颗粒含量越大,强度就越高。耐磨性亦然。
6.3.2纤维增强铝基复合材料
增强纤维主要有B,C,SiC,Al2O3
1)BF/Al:硼纤维增强材料是最早研究和应用的,其高温性能尤其突出,在500时的拉伸强度达到500MPa,这是铝合金材料不可想象的。硼纤维比重:2.5-2.65.硼在钨丝上化学气相沉积得到纤维,表面还要加陶瓷涂层增加其抗氧化性能。
制造过程:纤维排列、复合材料组装压合和零件层压。用易挥发的粘结剂将维粘一起并和铝箔上一起热压。
2)C/Al复合材料:碳纤维有优异的力学性能,而价格较低。碳纤维的表面处理很关键,
3)SiCF/Al复合材料:特别的高温抗氧化性能,能在较高温度下与铝复合。产品性能。有高的拉伸强度抗弯强度和优异的耐磨性能
4)短纤维增强铝基复合材料
特点:增强体来源广,价格低,成形性好,材料性能各向同性,可用传统工艺成型加工。用氧化铝和硅酸铝增强铝基合金其高温强度明显高于基体,弹性模量在室温和高温下都有较大的提高,热膨胀系数小,耐磨性改善。
6.3.3 铝基复合材料的应用
性能好,但价格昂贵,所以主要用作航天飞机、人造卫星,空间站等的结构材料,其次用作导弹构件,自行车架,高尔夫球杆等体育用品上。其民用前景随造价的降低会很广泛。
6.4镍基复合材料(TMCS)
其复合材料有望用于燃气涡轮发动机的叶片,承受高温和高负载。
以单晶氧化铝(蓝宝石)晶须和杆增强简单镍或镍铬合金是主要研究类型。
蓝宝石与镍在高温下会发生化学反应,所以要进行表面处理,通常是在表面涂钨。
制造方法主要是将纤维夹在金属板之间进行热压。如热压法成功地制造了Al2O3-NiCr复合材料。其工艺是先在杆上涂Y2O3,再涂一层钨,然后将杆夹在金属板之间真空于1200℃加压41.4MPa.
6.5钛基复合材料(TMCS)
1)金属钛耐高温、耐腐蚀,比重低(4.5g/cm3),是高性能结构材料的首选材料
主要有颗粒增强和连续纤维增强两大类.
如用碳化硅颗粒增强时,其硬度和刚度提高,常温强度比基体有时有所降低,但高温强度比基体好。
连续纤维复合钛合金的难度很大,只能用固相复合,因钛在高温时易于与纤维反应。硼钛复合材料是主要研究对象。为了解决钛在高温下与基体的反应性,也就是与纤维的相容性问题,提出如下方法:(1)最大限度减小反应的高速工艺;(2)最大限度减少反应的低温工艺;(3)研究低活性的基体;(4)研制最大限度减小反应的涂层;(5)选择具有较大反应容限的系列;(6)设计上尽量减小强度降低的影响。
2)应用:主要以用在航空航天用超高速发动机上为目的,但目前也有用在民用上,用作汽车材料和体育器材上。
6.6碳纤维增强金属基复合材料
1)碳纤维和许多金属缺乏相容性,目前相容性较好的有铝镁镍钴等,和钛等其它金属复合时会形成碳化物,故需进行表面处理。
2)碳纤维和某些材料复合会有特殊性质,如与铜,铝和铅等复合有高的强度,导电性,低摩擦性,低膨胀性(尺寸稳定性)等
3)与碳复合的金属除铝是主要的外,还有铜镁铅锌锡铍等。
4)Cf/Al:对纤维进行增强与铝的润湿性处理很关键。这样在热压时能很好结合。涂敷金属或非金属层是可期待的改性方式。
5)Cf/Ni:电沉积热压是主要方法。但低压时获得的强度更高,原因是高压损伤了纤维。