复合材料在化工应用
『壹』 高分子复合材料有什么应用领域
高分子材料是由来相对分子源质量较高的化合物构成的材料。我们接触的很多天然材料通常是高分子材料组成的,如天然橡胶、棉花、人体器官等。人工合成的化学纤维、塑料和橡胶等也是如此。一般称在生活中大量采用的,已经形成工业化生产规模的高分子为通用高分子材料,称具有特殊用途与功能的为功能高分子。高分子是生命存在的形式,所有的生命体都可以看作是高分子的集合。树枝、兽皮、稻草等天然高分子材料是人类或者类似人类的远古智能生物最先使用的材料。在历史的长河中,纸、树胶、丝绸等从天然高分子加工而来的产品一直同人类文明的发展交织在一起。
高分子材料和另外不同组成、不同形状、不同性质的物质复合粘结而成的多相固体材料,并且拥有界面的材料。高分子复合材料最大优点是博各种材料之长,如高强度、质轻、耐温、耐腐蚀、绝热、绝缘等性质,根据应用目的,选取高分子材料和其他具有特殊性质的材料,制成满足需要的复合材料。
『贰』 碳纤维增强树脂复合材料应用在哪些领域
总结碳纤维复合材料的现实应用有以下几个方面: (1)宇航工业用作导弹防热及结构材料如火箭喷管、鼻锥、大面积防热层;卫星构架、天线、太阳能翼片底板、卫星-火箭结合部件;航天飞机机头,机翼前缘和舱门等制件;哈勃太空望远镜的测量构架,太阳能电池板和无线电天线。 (2)航空工业用作主承力结构材料,如主翼、尾翼和机体;次承力构件,如方向舵、起落架、副翼、扰流板、发动机舱、整流罩及座板等,此外还有C/C刹车片。 (3)交通运输用作汽车传动轴、板簧、构架和刹车片等制件;船舶和海洋工程用作制造渔船、鱼雷快艇、快艇和巡逻艇,以及赛艇的桅杆、航杆、壳体及划水浆;海底电缆、潜水艇、雷达罩、深海油田的升降器和管道。 (4)运动器材用作网球、羽毛球和壁球拍及杆、棒球、曲棍球和高尔夫球杆、自行车、赛艇、钓杆、滑雪板、雪车等。 (5)土木建筑幕墙、嵌板、间隔壁板、桥梁、架设跨度大的管线、海水和水轮结构的增强筋、地板、窗框、管道、海洋浮杆、面状发热嵌板、抗震救灾用补强材料。 (6)其它工业化工用的防腐泵、阀、槽、罐;催化剂,吸附剂和密封制品等。生体和医疗器材如人造骨骼、牙齿、韧带、X光机的床板和胶卷盒。 编织机用的剑竿头和剑竿防静电刷。
『叁』 常见复合材料的功能及用途
1、玻璃纤维:
目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。
高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。
2、碳纤维:
碳纤维具有强度高、模量高、耐高温、导电等一系列性能,首先在航空航天领域得到广泛应用,近年来在运动器具和体育用品方面也广泛采用。
土木建筑、交通运输、汽车、能源等领域大规模采用工业级碳纤维。
3、芳纶纤维:
芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。
4、热塑性树脂基复合材料:
热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料(LFP)、连续纤维增强预浸带(MITT)和玻璃纤维毡增强型热塑性复合材料(GMT)。
根据使用要求不同,树脂基体主要有PP、PE、PA、PBT、PEI、PC、PES、PEEK、PI、PAI等热塑性工程塑料,纤维种类包括玻璃纤维、碳纤维、芳纶纤维和硼纤维等一切可能的纤维品种。
(3)复合材料在化工应用扩展阅读
复合材料主要可分为结构复合材料和功能复合材料两大类。
1、结构复合材料是作为承力结构使用的材料,基本上由能承受载荷的增强体组元与能连接增强体成为整体材料同时又起传递力作用的基体组元构成。
增强体包括各种玻璃、陶瓷、碳素、高聚物、金属以及天然纤维、织物、晶须、片材和颗粒等,基体则有高聚物(树脂)、金属、陶瓷、玻璃、碳和水泥等。
2、功能复合材料一般由功能体组元和基体组元组成,基体不仅起到构成整体的作用,而且能产生协同或加强功能的作用。
功能复合材料是指除机械性能以外而提供其他物理性能的复合材料。如:导电、超导、半导、磁性、压电、阻尼、吸波、透波、磨擦、屏蔽、阻燃、防热、吸声、隔热等凸显某一功能。统称为功能复合材料。
功能复合材料主要由功能体和增强体及基体组成。功能体可由一种或以上功能材料组成。多元功能体的复合材料可以具有多种功能。同时,还有可能由于复合效应而产生新的功能。多功能复合材料是功能复合材料的发展方向。
『肆』 复合材料在以后有哪些用途
复合材料在今后应用上十分有前景,它主要生产的是复合型的材料不同于其他材料,它具有耐高温,耐抗性,等等,它综合了其他材料的特性。在今后的应用上,它主要用在玻璃钢,机翼。铝合金等等
『伍』 化学在材料中的应用有哪些
说起高分子材料,普通人也许会觉得莫测高深,其实我们身边到处都是它们的身影。
无论是作为食物的蛋白质还是作为织物的棉、毛和蚕丝都是天然高分子材料,就连人体本身,基本上也是由各种生物高分子构成的。我国在开发天然高分子材料方面曾走在世界领先水平。利用竹、棉、麻等纤维等高分子材料造纸是我国古代的四大发明之一。另外,利用桐油与大漆等高分子材料作为油漆、涂料制作漆制品也是我国古代的传统技术。
高分子是由碳、氢、氧、硅、硫等元素组成的分子量足够高的有机化合物。之所以称为高分子,就是因为它的分子量高。常用高分子材料的分子量在几百到几百万之间,高分子量对化合物性质的影响就是使它具有了一定的强度,从而可以作为材料使用。这也是高分子化合物不同于一般化合物之处。又因为高分子化合物一般具有长链结构,每个分子都好像一条长长的线,许多分子纠集在一起,就成了一个扯不开的线团,这就是高分子化合物具有较高强度,可以作为结构材料使用的根本原因。另一方面,人们还可以通过各种手段,用物理的或化学的方法,或者使高分子与其他物质相互作用后产生物理或化学变化,从而使高分子化合物成为能完成特殊功能的功能高分子材料。
功能高分子材料主要包括物理功能高分子材料及化学功能高分子材料。前者如导电高分子、高分子半导体、光导电高分子、压电及热电高分子、磁性高分子、光功能高分子、液晶高分子和信息高分子材料等;后者如反应性高分子、离子交换树脂、高分子分离膜、高分子催化剂、高分子试剂及人工脏器等,此外还有生物功能和医用高分子材料,如生物高分子、模拟器、高分子药物及人工骨材料等。
大致地说,高分子可以分为天然高分子与合成(人工)分子。
人工高分子的岁数并不大
直到19世纪中叶,人类才开始对天然高分子的化学改性与应用,而后又发展到高分子的人工合成,这中间主要包括橡胶、纤维与塑料等。
(一)、天然橡胶的利用、开发与改性。在中美洲与南美洲,15世纪左右当地人用天然橡胶做游戏与生活用品如容器与雨具等。18世纪法国人发现南美洲亚马孙河有野生橡胶树,橡胶一词当地印地语即“木头流泪”的意思,割开橡胶树皮即流出乳液,后来叫天然橡胶,19世纪中叶,英国人取橡胶树的种子在锡兰(斯里兰卡)种植成功,并逐渐扩大到马来西亚与印尼等地,但是制造天然橡胶制品中,生胶如何溶解与加工是一大问题。直到19世纪40年代美国人发现用松节油、硫黄与碳酸铅共热后得到不粘而有弹性制品,即所谓硫化技术,因此,到1920年左右,亚洲地区天然橡胶出口量达70多万吨,与当时巴西的野生橡胶出口量相同。
(二)、天然纤维素的改性。19世纪,德国人开始用硝酸溶解棉纤维,结果可以纺丝或成膜,但其易燃烧,最后用它制成了无烟炸药。如果在其中加入樟脑,可以加工成名为“赛璐珞”的塑料,它能制作照相底片或电影胶片,但也易燃,此外,这种工艺也用在汽车车身喷漆中。稍后,英国人用氢氧化钠处理棉纤维得到丝光纤维,再用二硫化碳溶后纺丝,制成粘胶纤维,还可以用木浆做帘子线、玻璃纸及人造丝等。但80年代后期由于二硫化碳的污染问题,使厂家不得不另找它法,工厂多半停产。此外,德国人用醋酐进行纤维素酯化,获得醋酸纤维,由于不易燃烧故多用于照相底片与电影胶片,也可用于飞机机身涂料或者重新纺丝制成人造丝织物。
(三)、最早的塑料。在20世纪初,美国人用苯酚与甲醛反应得到可用作电绝缘器材的酚醛树酯,这是最早的合成高分子,与此同时,俄国人用酒精制成丁二烯,再用钠使之聚合成橡胶,二次大战后德国人与美国人又发展成一类十分重要的合成橡胶即丁二烯与苯乙烯共聚而得的丁苯橡胶。尽管有以上几方面的重要成果并建立了工业,但当时对天然高分子与合成高分子的结构并不清楚,因此,对聚合反应历程也还不了解。
20世纪初,人们已经确认了淀粉的分子式,并知道其水解后得到葡萄糖。但并不知道分子之间如何连接,所以认为淀粉是葡萄糖或它的环状二聚体的缔合体。同样,科学家了解天然橡胶裂解可得异戊二烯,但是不知它们之间如何连接以及它的末端结构,因为也认为是二聚环状结构的缔合体。科学技术的发展使科学家们有可能用物理化学和胶体化学的方法去研究天然和实验室合成的高分子物质的结构。德国物理化学家斯陶丁格经过近10年的研究认为,高分子物质是由具有相同化学结构的单体经过化学反应(聚合)将化学键连接在一起的大分子化合物,高分子或聚合物一词即源于此。1928年当斯陶丁格在德国物理和胶体化学年会上宣布这一观点时,却遭到多数同行反对而未被承认。但真理是在斯陶丁格这一边,经过两年的实验验证,1930年斯陶丁格再次在德国物理和胶体化学年会上阐明他的高分子概念观点时,他成功了。至此,历经10余载的争论,科学的高分子概念才得以确立。他进一步阐明了高分子的稀溶液粘度与分子量的定量关系,并在1932年出版了一部关于高分子有机物的论著,这后来被公认为是高分子化学作为一门新兴学科建立的标志。为了表扬斯陶丁格的功绩,瑞典皇家科学院授予他1953年诺贝尔化学奖。
对大分子概念的一个有力证实就是1935年美国杜邦公司发表已二胺与已二酸缩聚而成高分子聚酰胺,即尼龙6-6,并于1938年工业化,这就是大家熟知的尼龙袜材料。另外,鲜为人知的是,二次大战后期美军使用的降落伞就是这种尼龙6-6材料制作的。 40年代乙烯类单体的自由基引发聚合发展很快,实现工业化的包括氯乙烯、聚苯乙烯和有机玻璃等,这是合成高分子蓬勃发展的时期。进入50年代,从石油裂解而得的a-烯烃主要包括乙烯与丙烯,德国人齐格勒与意大利人纳塔分别发明用金属络合催化剂聚合而成聚乙烯即低压聚乙烯与聚丙烯,前者1952年工业化,后者1957年工业化,这是高分子化学的历史性发展,因为可以由石油为原料又能建立年产10万吨的大厂,他们二人后来都获得了诺贝尔奖金。
60年代,由于要飞往月球而出现高温高分子的研究热。耐高温的定义是材料能够在氮气中、500摄氏度环境中能使用一个月;在空气中,300摄氏度环境下能使用一个月。其结果主要分为两大类,一类是芳香聚酰胺例如苯二胺与间苯二酰缩聚得到的高分子Nomex,这在当时曾被作为太空服的原料。还有对苯二胺与对苯二酰氯缩聚得到的高分子Kevlar,它属于耐高温的高分子液晶,现在用于超音速飞机的复合材料中。另一类是杂环高分子,例如聚芳亚酰胺和作为高温粘合剂的聚苯并咪唑为现在的宇航飞行所需的材料打下了基础。
由于高分子材料具有许多优良性能,适合现代化生产,经济效益显著,且不受地域、气候的限制,因而高分子材料工业取得了突飞猛进的发展,目前世界上合成高分子材料的年产量已经超过1.4亿吨。如今高分子材料已经不再是金属、木、棉、麻、天然橡胶等传统材料的代用品,而是国民经济和国防建设中的基础材料之一。与此同时,高分子科学的三大组成部分――高分子化学、高分子物理和高分子工程也已经日趋成熟。
高分子材料包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。其中被称为现代高分子三大合成材料的塑料、合成纤维和合成橡胶已经成为国家建设和人民日常生活中必不可少的重要材料。由于石油资源的逐渐减少,人们正在积极考虑其它能源,例如太阳能、氢能与原子能的开发,但也必需看到石油的主要用途是作为燃料,用于化学工业的仅占7%,其中作为高分子原料的只有5%,因此一般认为即使在下个世纪,高分子的主要原料仍可来自石油。另一方面,特种油田高分子用于二次或三次采油颇有成效,很有助于石油能源开发。材料高分子在材料领域中有它特殊的地位,特别是交通工具,可以替代比重较大的金属与陶瓷,以及木材及其它天然材料。例如汽车车身与车壳结构材料中已经有50%用高分子材料,下世纪将增至70%至100%。再如宇航与航空机身与机翼,减轻重量可以大大省油,因此都用高分子复合材料,从80年代的30-40%总重量,至90年代的50-60%,估计21世纪可达70-80%。
活性聚合是促使高分子化学走向新时代的基础。要进行活性聚合,引发速度要快,没有链转移与链终止,实验室测定活性聚合从三个方面下手,一是转化率与单体浓度成正比与催化剂浓度成反正;二是高分子分子量与转化率或时间成正比;三是分子量分布要窄,约为1.2左右。目前,正离子活性聚合与负离子活性聚合都已展开,络合催合聚烯烃的活性聚合所用烯土催化剂已有端倪,只有自由活性聚合还未达到应用程度。
有人说高分子化学是一门排队化学,排头要很快站出来,队员迅速排上队,面向都一样,所有队员都必需排上队,结果是每排长短都一样,也就是分子量分布为1,转化率100%。这意味着在高分子材料新时代中,有下列三个重要方面:首先是高分子的分子量概念将彻底改变,因为原来的高分子分子量都是各式各样的平均值,主要原因是因为长短不齐;其次是高分子的概念也将彻底改变。高分子决不是不易控制的长短不齐的分子组成,而是均匀高分子所组成;最后是高分子性能以及加工应用,都将因为是精密高分子而出现全新的数据、全新的性能与加工方法与用途。
所谓高分子材料主要包括塑料、橡胶与纤维三大合成材料,其中塑料占总量的80%。在塑料中占80%的是通用高分子,包括高压聚乙烯、低压聚乙烯、聚丙烯以及聚氯乙烯与聚苯乙烯。
在科学家的手中,工程塑料家族诞生了,它的成员包括能耐高温100-160摄氏度的尼龙、聚碳酸酯、聚酯及聚苯醚。到了90年代又发展更高耐热200-240摄氏度的聚醚砜、聚苯硫醚、聚醚醚酮及聚酰亚胺的所谓高温工程塑料。与此同时还有复合材料的建立与发展,例如开始用玻璃纤维的复合材料发展到用碳纤维的耐高温复合材料。
非结构高分子材料与功能高分子也获得了大发展。80年代以来高分子粘合剂与油漆涂料也都向耐高温方向发展,也就是高分子从结构向非结构材料方面发展。还有更重要的是功能高分子的多方面发展,例如利用吸附性能作为海水淡化及其它如离子交换树脂与分离膜的属于化学功能高分子;应用于光导纤维与光刻胶的属于光功能高分子;具有导电性能的电功能高分子及作为人工脏器与药物控释的医学功能高分子。因为功能高分子的兴起是80年代以来的十分重要的发展。
硅系高分子材料取代碳高分子材料,成为新一代功能材料。日本电信电话公司开发的由氧、碳、氘和硅四种元素构成的新型材料,在500摄氏度下不熔化,用它制作光器件,不会因屈折率变化而降低功能。
一些国家和地区的领导人对材料科学的基础地位认识日益深化,意识到许多行业技术上的可行性和进步基本上取决于相应材料的开发,而材料的选择关系到提高生产效率,降低成本和提高质量的问题。基于这种认识,他们加大对新材料研究的投入力度。
美国竞争力委员会把材料技术列为应予重点扶植的六十类关键技术的第一位;英国一项包括高分子材料在内的新型材料的大规模研制计划,正在实施。法国确定的IDMAT新材料研究开发计划,是11项国家计划的重点。俄罗斯最近通过的《俄罗斯联邦1996-2000年民用科技优先研究开发的专项规划》把新材料研究开发划入优先领域中;日本正在积极实施为期10年(从1991年度起)的高分子新材料研究计划。连台湾也把开发高级材料作为69项重点技术的“重点中的重点”。90年代,日本在新材料开发研究领域每年投入的费用比美国高50%,人力投入也比美国多近一倍。从1991年起,日本总共投资大约2500亿日元用于以开发革新材料为目标的10年研究计划。欧洲联盟对材料科学的投资占其第四个科研框架计划投资总额的16%,仅次于信息技术和能源技术投资,达17.07亿欧洲货币单位。
英国瑞侃公司研究所的郭卫清在旅英中国学人第3届材料科学年会提出,作为材料科学的一个重要分支,高分子材料和技术的发展尤其迅猛。高分子材料在众多工业的广泛应用已使该材料成为经济发展不可缺少的一部分。
中国高分子材料熠熠生辉
国内高分子材料的进展不断见诸报端。新华社曾报道:国家“八五”重点科技攻关项目“聚醚砜、聚醚醚酮、双马型聚酰亚胺等类树脂专用材料及其加工技术”,在成都通过由国家有关部门组成的验收委员会的验收。
聚醚砜、聚醚醚酮、双马型聚酰亚胺等特种工程塑料,是60年代发展起来的新型高分子材料。由于这类材料具有优良的综合性能,现已成为各种空间飞行器和新型运输工具实现高速、轻量、增加航程的可靠保证,也是电子电气产品实现大容量、高集成和小型化不可缺少的新材料。由四川联合大学、北京市化工研究院、东方绝缘材料厂等10个单位共同承担的这项重点课题,经过120多名科技人员五年合作攻关,不但全面完成了任务,取得27项鉴定成果。其中吉林大学吴忠文教授等研制的“聚醚醚酮树脂”,性能达到目前国际先进水平,成本大大低于国外同类产品;大连理工大学蹇(汤去氵加钅旁)高教授等研制完成的“杂环取代联苯聚醚砜的合成”,主要经济技术指标达到国际先进水平;四川联合大学、成都飞机工业公司、东方绝缘材料厂江璐霞教授等研制的“双马型聚酰亚胺航空工装模具材料”,在国内处领先地位,达到80年代末国际水平。目前有多种产品形成了规模生产能力,提供特种工程塑料新产品15种、新材料19种、新工艺3项。
另外,新华社还曾以“我国高分子化学研究取得重大突破”为题报道一种用于家电产品的新型紫外光固化涂料――JD-1紫外光固化树脂,在湖南长沙市研制开发成功,并通过鉴定。专家们认为,它填补了国内一项空白,达到国外同类产品的先进水平。
位于长沙市东岸的湖南亚大高分子化工厂有限公司,多年来始终追踪高科技发展潮流,不断研制开发高起点、高水平、高效益的新技术,并使这些技术成果迅速转化为生产力。这个公司的科技人员在资金少、条件差的情况下,经过数千次试验,终于研制开发出JD-1紫外光固化树脂。只需在各种家电外部涂上一层紫外光固化树脂,经过一番处理,家电犹如穿上一件硬如玻璃钢、光洁似镜面的“外衣”。专家介绍,家电外表的装饰是衡量其档次的一个重要指标,这是国内外化工界多年研究的一大课题。新型紫外光固化树脂的研制成功,将使我国家电装饰跨上一个新台阶;同时结束长期进口的历史,可节约大量外汇。专家鉴定认为,这是一种污染少、节能效益好的高科技产品,具有耐冲击、耐老化、固化速度快等优点,可广泛应用于电冰箱、洗衣机、电气仪表、电讯设备和汽车、摩托车等。
一项处于国际领先水平的聚合物技术--超高分子量聚丙烯酰胺合成技术在大庆油田化工总厂研制成功。专家称,这项技术推广应用后,可使聚合物用量在减少百分之二十的情况下,大幅度提高原油采收率,每年可为油田化工企业增效5000多万元。
1995年,随着三次采油技术在大庆油田的推广应用,油田化工总厂引进法国技术生产聚丙烯酰胺,分子量达1000-1500万,使我国生产聚合物技术跨入世界先进行列。但根据聚合物驱油试验研究,分子量大于1700万的超高分子量聚合物的驱油效果更好。为了加快超高分子量聚丙烯酰胺产品的工业开发步伐,大庆油田化工总厂通过多渠道横向联合的办法,开展科技攻关。仅用三个月时间,攻关小组的14名科技人员就在工业化试验中,成功地合成了分子量达到1700万的聚丙烯酰胺,并在试生产中取得了满意效果。目前,这个厂已开始投入批量生产超高分子量聚丙烯酰胺产品。
另外,“PTC智能恒温电缆”、“多功能超强吸水保水剂”、“粉煤灰高效活化剂”等等,都是我国在高分子材料领域取得的不俗成果。还有就是我国的高分子单链单晶的研究取得国际领先的成绩:成功地制备出顺丁橡胶的单链单晶,独创性地开展了单分子链玻璃体的研究,首次观察到高分子液晶态的新的纹影结构。这都引起世界科技界的轰动。
『陆』 复合材料主要用于什么领域及有什么优势
下面所说均为纤维增强复合材料,希望对你有帮助
先说优势(以纤维增强复合材料为例)
轻质高强相对密度在1.5~2.0之间,只有碳钢的1/4~1/5,可是拉伸强度却接近,甚至超过碳素钢,而比强度可以与高级合金钢相比。因此,在航空、火箭、宇宙飞行器、高压容器以及在其他需要减轻自重的制品应用中,都具有卓越成效。某些环氧FRP的拉伸、弯曲和压缩强度均能达到400Mpa以上。
耐腐蚀性能好FRP是良好的耐腐材料,对大气、水和一般浓度的酸、碱、盐以及多种油类和溶剂都有较好的抵抗能力。已应用到化工防腐的各个方面,正在取代碳钢、不锈钢、木材、有色金属等。
电性能好是优良的绝缘材料,用来制造绝缘体。高频下仍能保护良好介电性。微波透过性良好,已广泛用于雷达天线罩。
热性能良好FRP热导率低,室温下为1.25~1.67kJ/(m·h·K),只有金属的1/100~1/1000,是优良的绝热材料。在瞬时超高温情况下,是理想的热防护和耐烧蚀材料,能保护宇宙飞行器在2000℃以上承受高速气流的冲刷。
可设计性好(1)可以根据需要,灵活地设计出各种结构产品,来满足使用要求,可以使产品有很好的整体性。
(2)可以充分选择材料来满足产品的性能,如:可以设计出耐腐的,耐瞬时高温的、产品某方向上有特别高强度的、介电性好的,等等。
工艺性优良(1)可以根据产品的形状、技术要求、用途及数量来灵活地选择成型工艺。
(2)工艺简单,可以一次成型,经济效果突出,尤其对形状复杂、不易成型的数量少的产品,更突出它的工艺优越性。
应用领域:
FRP应用领域
一:FRP在我国建筑领域的应用
80年代以前,FRP主要用于军工产品,院所之间受到保密限制,不便交流,建筑师对FRP的优良性能不了解,得不到可靠的性能数据,因此未大量用于建筑结构。
90年代开始,随着对FRP研究工作的不断深入,使FRP的缺陷得以克服,产品价格有所下降。在大型建筑结构中的应用取得很好的效果。下面简要介绍几个实例:
(1)大型FRP机房:1991年在杭州市建成,该机房与其下面宾馆取得建筑上的协调,从外观上难于区分,效果很好;
(2)卡拉OK娱乐厅柱形屋盖:长26m,跨度10m,1992年在上海大中华橡胶厂楼顶建成,十分美观实用;
(3)旋转餐厅球形屋盖:球径45m,1993年在上海长江口商城建成;
(4)东方明珠电视塔大堂双曲面屋盖及内装饰件:直径60m,总面积约5000m2,1994年完成。从合同签订至安装完成仅用了三个多月,使用至今,效果很好;
(5)方舟大厦尖顶(高7m)及拼装屋面(约300m2):1996年建成,1997年3月安装完毕。
国外建筑领域应用FRP的数量大、品种多
复合材料在整个工程材料中用量从1950年的2%将上升到2000年的14.7%,预计2020年将有望达到18.4%。美国1993年用量23.7万t,占总量的20%,仅次于交通运输业,是第二大应用领域;英国1992年占总用量的26.6%,是第一大应用领域;西欧1992年用量24.7万t,占总量的21.3%,是第二大应用领域;日本1993年用量23,7万t,占总用量的55%左右,是第一大应用领域。
国外FRP在建筑领域的应用实例有
①直径66m的全FRP球形娱乐场:该建筑位于美国西海岸临近旧金山的里诺市,该建筑由2000多块四边形FRP单元件拼装而成;
②美国New Jersey州、大西洋城Trump Taj Mahal综合娱乐场:占地39万m2,门面1.6km长,大部分是FRP艺术造型装饰件,共有二万三千多件,总值约1500万美元;
③美国New York 的 FRP可口可乐大广告牌:立体状l2.5m×19.8m,“可口可乐瓶”高12.8m,冰块高3m;
④美国Boston许多建筑物门窗、门面、栏杆、屋檐板、装饰拱都采用FRP;
⑤美国Atlanta银行大厅高楼层盖采用FRP,美国Florida Tampa市C&S银行大楼(该州西海岸最高的大厦,43层),采用半锥形FRP屋盖,高7.9m,都兼有防腐、透波和抗风等多种功能。还有机场和气象雷达罩等也都采用FRP。
据粗略统计,FRP在建筑领域的应用主要有以下五个方面:
①各种异形建筑结构物:雷达天线罩、岗亭、广告牌(物)、球形娱乐场、球幕影剧院、大跨度机库、车库、仓库、旋转餐厅屋盖、卡拉OK娱乐厅柱形屋盖、运动场大跨度看台屋盖、室内运动场屋盖和高层建筑锥形顶等;②各种功能性建筑物:电视塔透波墙、透波机房、屏蔽房、隔声墙、化工厂防腐车间、码头FRP与金属复合椿、医院防辐射复合墙、大型冷却塔、污水处理厂防腐板、大型耐腐蚀槽、罐等;③各种建筑物内外装饰件:屋檐、沿口、门楣、骑马廊、灯槽、灯饰、罗马柱、吊顶、艺术花瓶、假山瀑布、吉祥动物(狮子、牛、象等)等;④小康居室、办公室建筑构件:门、隔墙、隔段、家具、厨房用具、花园栏杆、围墙、小车库、游泳池、各种窗框、盆景等;⑤各种卫生洁具:整体卫生盒子间、整体淋浴间、水箱、移动厕所、净化池、洗面盆具、抽水马桶、浴缸、太阳能热水器等。
二:运输部门:以汽车为中心增长1.7%,即使客车出售辆数下降,但玻璃纤维增强塑料(FRP)制品正在平稳上升。汽车主体使用400种以上的部件是SMC产品,2007年新型汽车使用100种以上的部件。玻璃纤维增强热塑性塑料(FRTP)的使用量迅速提高。汽车发动机使用的FR-Nylon制吸气集合管。比铝制汽车发动机效率高,而且经济。汽车传动轴是拉挤成型,材料采用碳纤维、乙烯基酯和铝管制成。目前,已活跃在汽车市场上。最主要的是用拉挤成型的空调设备用通风管。铁道部对全FRP制车辆进行了现场试验,并在今年投放市场。
三:土木建筑部门:FRP制品在住宅方面也不断增加。在基础建筑方面有干线公路桥、人行桥、港湾用桥墩。另外也广泛使用用来增强混凝土的FRP筋。
四:耐腐蚀器械方面:FRP在器械方面用途广泛。半导体界和化学界、污水处理和下水道处理方面、石油、煤气用平台、化工贮存罐等。
五:船舶方面。
六:电气、电子:印刷电路板、雷达罩的需求旺盛。用FW生产的照明电杆已有增长趋势,并开始进行电线杆子现场实验。目前欧洲已大量生产。美国也投放市场。电子方面的陈旧化也有待刺激。预计今后手提式电话机等也会采用FRP、FRTP制品。
七:消费材料:FRP耐老化、外观美观,替代了原用材料。卫星广播天线以及DBS天线的销售量正在增长,特别是DBS天线的销售量增长迅速。用碳纤维生产的高尔夫球杆也势在必增,生产碳纤维的厂家也增加了设备。
八:家电、办公设备:新设计的缝纫机壳的销售量也在增长。目前新建住宅受到转卖的影响,家电也不断增长。办公设备市场大、销售广、基础雄厚。FRTP玻璃钢格栅具有优良的耐腐蚀性能、耐热性、刚性、难燃性,所以在家电、办公设备的使用上占优势。
九:航空、防卫方面。
FRP型材应用实例
FRP工具柄本系列产品主要应用在包括铲子、耙子、锄头、剪刀、锤子等园林工具和五金工具上。
FRP拉挤圆管本系列产品适用于制作帐蓬、蚊帐、箱包、手袋、X展架、工具柄、风车、高尔夫(球袋、旗杆、练习杆、练习网)、三脚架、喷雾杆、脚架杆、玩具骨架、飞碟骨架、空竹手柄、风筝杆等。
FRP拉挤圆棒本系列产品适用于制作雨伞骨、风筝骨架、PCB设备、航模飞机、支架毯、沙滩席、转动轴、轴芯、窗帘杆、玩具、箱包、飞蝶、旗杆(桌旗、车旗、手摇旗、刀型旗)、植物支撑架、篱笆、烟囱杆、游戏毯支撑架、窗帘转/拨棒等。
FRP拉挤扁条系列本系列产品适用于制作瑜珈健身圈、魔力圈、健身器材、玩具弓、窗帘条、箱包、手袋、旗杆横条、工具手柄等。
FRP格栅平台系列本系列产品主要有玻璃钢格栅、防腐平台、走道和围栏系统、绝缘梯子、冷却塔支撑架、电缆桥架、地铁轨道罩等。
拉挤产品深加工系列我们根据客户需求对玻璃纤维杆、玻璃纤维管、玻璃纤维棒表面包PP PE PVC,此产品已经广泛用于园艺及农业上。
『柒』 复合材料的主要应用领域
复合材料的主要应用领域有:①航空航天领域。由于复合材料热稳定性好,比强度、比刚度内高,可用于制容造飞机机翼和前机身、卫星天线及其支撑结构、太阳能电池翼和外壳、大型运载火箭的壳体、发动机壳体、航天飞机结构件等。②汽车工业。由于复合材料具有特殊的振动阻尼特性,可减振和降低噪声、抗疲劳性能好,损伤后易修理,便于整体成形,故可用于制造汽车车身、受力构件、传动轴、发动机架及其内部构件。③化工、纺织和机械制造领域。有良好耐蚀性的碳纤维与树脂基体复合而成的材料,可用于制造化工设备、纺织机、造纸机、复印机、高速机床、精密仪器等。④医学领域。碳纤维复合材料具有优异的力学性能和不吸收X射线特性,可用于制造医用X光机和矫形支架等。碳纤维复合材料还具有生物组织相容性和血液相容性,生物环境下稳定性好,也用作生物医学材料。此外,复合材料还用于制造体育运动器件和用作建筑材料等。