陶瓷基复合材料的增强基体
答:
复合材料 是一种混合物。
复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:
①纤维增强复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。
②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。
③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。
④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。
复合材料主要可分为结构复合材料和功能复合材料两大类。
结构复合材料是作为承力结构使用的材料,基本上由能承受载荷的增强体组元与能连接增强体成为整体材料同时又起传递力作用的基体组元构成。增强体包括各种玻璃、陶瓷、碳素、高聚物、金属以及天然纤维、织物、晶须、片材和颗粒等,基体则有高聚物(树脂)、金属、陶瓷、玻璃、碳和水泥等。由不同的增强体和不同基体即可组成名目繁多的结构复合材料,并以所用的基体来命名,如高聚物(树脂)基复合材料等。结构复合材料的特点是可根据材料在使用中受力的要求进行组元选材设计,更重要是还可进行复合结构设计,即增强体排布设计,能合理地满足需要并节约用材。
功能复合材料一般由功能体组元和基体组元组成,基体不仅起到构成整体的作用,而且能产生协同或加强功能的作用。功能复合材料是指除机械性能以外而提供其他物理性能的复合材料。如:导电、超导、半导、磁性、压电、阻尼、吸波、透波、磨擦、屏蔽、阻燃、防热、吸声、隔热等凸显某一功能。统称为功能复合材料。功能复合材料主要由功能体和增强体及基体组成。功能体可由一种或以上功能材料组成。多元功能体的复合材料可以具有多种功能。同时,还有可能由于复合效应而产生新的功能。多功能复合材料是功能复合材料的发展方向。
Ⅱ 陶瓷基复合材料的增强增韧机理有哪些
近年来,作为纳米复合材料--纳米碳酸钙填充聚合物改性已成为材料科学的一支新秀,引起人们的极大兴趣。这类材料兼有有机物和无机物的优点,由于无机物与聚合物之间界面面积非常大,且存在聚合物与无机填料界面间的化学结合,因此具有理想的粘接性能,可消除无机物与聚合物基体两种物质热膨胀系数不匹配问题,充分发挥无机材料优异的力学性能及耐热性。由于此类纳米复合材料熔体或流体具有相似的流变性能,因此对各种类型的成型加工有广泛的适用性,具有广阔的发展前景。
目前在纳米碳酸钙的使用过程中,不少采用常规共混复合方法制备的纳米粉体填充聚合物复合材料远远没有达到纳米分散水平,而只属于微观复合材料。原因在于当填料粒径减小到纳米尺寸时,粒子的表面能如此之大,致使粒子间的自聚集作用非常显著,故采用现有的共混技术难以获得纳米尺度的均匀共混,并且现有的界面改性技术难以完全消除填料与聚合物基体间的界面张力,实现理想的界面粘接。如果填料在聚合物基体中的分散达到纳米尺度,就有可能将无机填充物的刚性、尺寸稳定性和热稳定性与聚合物的韧性、加工性及介电性完美地结合起来,获得性能优异的聚合物基纳米基复合材料。
一、增强增韧机理
纳米碳酸钙作为聚合物中的功能性填料,其对聚合物性能的影响因素主要是粒子大小、聚集状态和表面活性等方面。
纳米碳酸钙的粒子比普通碳酸钙更细微。随着粒子的微细化,境料粒子表面原子数目的比例增大,使粒子表面的电子和晶体结构都发生变化,到了纳米级水平,填料粒子将成为有限个原子的集合体,使纳米材料具有一系列优良的理化性能。最明显最有代表性的体现在比表面积和表面能的变化上,粒子愈小,单位质量的比表面能愈大,增大了填料与聚合物基质的接触面积,为形成物理缠结提供了保证。
根据无机刚性粒子在聚合物中的增韧理论,一个必要条件是分散粒子与树脂界面结合良好。树脂受到外力作用时,刚性纳米级碳酸钙粒子引起基体树脂银纹化吸收能量,从而提高增韧效果。
从纳米碳酸钙的聚集状态看,有部分纳米粒子形成了链状结构,它属于一次结构。这种结构越多,填料的结构化水平越高,与聚合物形成缠结的可能性越大。另外填料的酸碱性也是其表面化学活性的一种反映,可影响胶料的硫化速度和物理性能。
由上述几个方面的分析可知,从无机填料的优化角度看,纳米碳酸钙确是一种优化材料,既具有因粒子微细和链状结构而生成的物理缠结作用,又具有由于表面活性而引起的化学结合作用,在聚合物填充中表现出良好的补强作用。
二、在聚合物中的应用
1.聚丙烯
纳米级碳酸钙混炼于PP材料中,对PP的结晶有明显的诱导作用,起到了异相成核作用,使PP的结晶度提高。纳米级碳酸钙的粒径小,比表面积大、表层原子数多、表面活性高,则PP结晶体的颗粒小。由于纳米级碳酸钙与聚合物的界面粘接强度高,从而改善PP的抗冲击强度和聚合物的力学性能。实验表明,随着填充量的增加,熔融吸收量呈现先升后降趋势。纳米级碳酸钙在低于3.5%(质量分数,下同)时,其在基体中分散性良好,对PP的结晶度提高较大。当含量大于3.5%后,由于团聚现象加剧,无机粒子的异相成核作用减弱,因此,PP的结晶度下降。对普通碳酸钙(9цm左右)而言,虽然对PP的结晶有诱导作用,但是粒子对PP基体的界面粘接强度差,因此,随着普通碳酸钙含量的增加,材料的力学性能有所下降。PP/纳米能碳酸钙材料的综合力学性能要明显优于PP和PP微米级碳酸钙复合材料。
2.聚氯乙烯
PVC是目前用量最大的通用塑料之一,随着共混改性技术的发展,其应用领域越来越广。传统PVC增韧改性通常是在树脂中加入橡胶类弹性体,但是是以降低材料宝贵的刚性、耐热性、尺寸稳定性为代价的。用纳米碳酸钙改性能明显提高PVC的力学性能。研究表明,当纳米碳酸钙用量逐渐增加时,其体系的拉伸强度也增加,当其用量为10%时出现最大值58MPa,为纯PVC(47MPa)的123%,再增加其用量,体系拉伸强度下降。同样加入纳米碳酸钙对体系缺口冲击强度均有较大的增加,当用量为10%时,缺口冲击强度达到最大值16.3kJ/m2,为纯PVC(5.2kJ/m2)的313%;而微米级碳酸钙对体系的最大冲击强度为纯PVC的238%。这是因为纳米级碳酸钙颗粒细小,在基体中成点阵分布,粒子与基体界面间无明显间隙,象粘在基体上,基体在冲击方向则存在一定的网丝状屈服,从而提高PVC的综合理化性能。
3.硅橡胶
近年来,补强型填料白炭黑对硅橡胶性能的研究已较为深入,但填充型材料碳酸钙对硅橡胶性能影响的研究报道较少。由于纳米碳酸钙性能稳定,相对价格比白炭黑低得多,填充量大,且对硅橡胶有一定的补强作用,所以日益受到人们的重视。
纳米碳酸钙对硅橡胶性能的影响主要是水分、粒径大小和表面状态。一般情况下,纳米碳酸钙的水分能满足要求,即使存在少量水分,也可以通过捏合过程中,在一定的温度下减压脱水,使其达到要求。碳酸钙粒径的大小对硅橡胶的拉伸强度和扯断伸长率的影响较大。碳酸钙的粒径越小,与硅氧烷分子链作用的表面积越大,补强点越多,对硅橡胶的拉伸强度和扯断伸长率影响也就越大。表面状态也是影响硅橡胶的拉伸强度和扯断伸长率的重要因素,纳米碳酸钙经脂肪酸表面处理,表面由亲水性变为亲油性,与硅橡胶间的润湿分散性好,使纳米碳酸钙均匀地分散在硅橡胶中,不但起到增强作用,而且改善硅橡胶的流变性能,碳酸钙的粒径越小,其体系的触变性越好。上海卓越纳米新材料股份有限公司生产的纳米牌活性碳酸钙广泛应用于硅橡胶中,得到用户的一致好评。
综上所述,纳米碳酸钙填充于聚合物中,自身具有补强填料的功能,显著改善聚合物的应用性能已得到人们的共识,主要表现在提高塑性制品机械力学性能、热力学性能、改善成型加工性能。
三、应用要点
要真正获得纳米碳酸钙填充的最佳效果,与其使用方法有关。实践证明,在相同的混炼设备和配方工艺条件下,纳米碳酸钙比普通粒子混炼能大、生热大、混入速度慢。在应用中必须注意根据所用胶种选择合适的活化品种,确保具有相容性;配方设计要求填充量适宜,整个填充体系的组合和搭配合理;工艺条件包括加料顺序和操作温度等要合理;必要时,通过选择其他适宜的辅助分散剂,提高与胶料的相容性。
Ⅲ 陶瓷基复合材料有何特性
由纤维增强陶瓷的陶瓷基复合材料既可保留陶瓷材料耐高温、高硬高强和耐磨蚀的性能,同时又克服了陶瓷的脆性,陶瓷基复合材料可满足1200℃~1900℃的使用条件。人造地球卫星、载人宇宙飞船等的发射成功,取决于称为“烧蚀材料“的陶瓷基复合材料,当宇宙飞行器从外层空间返回地球时,稠密的大气层是它的必经之地,高速的飞行速度使飞行器和空气之间产生强烈的摩擦,由此而放出的热量瞬间可高达8000℃~10000℃,”烧蚀材料”此时吸收大量的热烧掉自己的一部分,与些同时使周围的温度降低,以保证飞行器本体安然无恙。
陶瓷基复合材料除了用于航空航天部件,还可用于滑动构件、发动机部件和刀件具等。法国用长纤维增强碳化硅复合材料作为超高速列车的制动机,其优异的摩擦磨损特性是传统制动件无法相比的。
陶瓷基复合材料以优异的耐高温和耐磨损性能取胜于其他复合材料,但由于价格昂贵使其应用受到一定限制。
先进复合材料为航天航空事业做出了重大贡献,最新研究结果表明,在某些特种飞机上先进复合材料用量已占50%以上,美国最新生产的具有隐身功能的轰炸机B-2,其机体的结构材料几乎全是复合材料。当今先进复合材料已广泛扩展到其他领域,如用复合材料制成的箭,其箭杆重量减轻4%,命中率也大大提高。在汽车工业领域,用先进复合材料制成的制件代替同样性能的钢制件,可减重70%左右,而且在工艺上可一次成型,可用来制造汽车车体、受力构件、发动机架和内部构件。先进复合材料在化工、纺织业、医疗和精密仪器等领域也发挥着不可估量的作用。
先进复合材料的研究十分活跃,发展趋向有以下特点:由宏观复合向微观复合发展;由增强性的双元混杂向超混杂复合发展;由结构复合向多功能复合发展。复合材料除具有力学性能外,还有其他如电、磁、光等性能。
Ⅳ 碳纤维增强复合材料的增强体是啥
碳纤维增强复合材料,增强体当然是碳纤维。
金属基,基体就是金属,
陶瓷瓦不是专内业术语啊,应该叫碳纤维增容强陶瓷基复合材料,基体是陶瓷。
基体还有很多种类啊,比方说最常用的是树脂基复合材料,也叫碳/碳复合材料,水泥基复合材料等等。
不懂再问啊,有问必答!!!————除非不会……
Ⅳ 制备高性能陶瓷基复合材料对基体和纤维有哪些要求
陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化版硅权、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。 陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。
Ⅵ 制备陶瓷基复合材料的方法有哪些
1、料浆浸渍和热压烧结法
料浆浸渍和热压烧结法的基本原理是将具有可烧结性的基体原料粉末与连续纤维用浸渍工艺制成坯件,然后高温下加压烧结,使基体材料与纤维结合成复合材料 。
2、直接氧化沉积法
直接氧化沉积法最早被用于制备A12O3/A1复合材料,后推广用于制备连续纤维增强氧化物陶瓷基复合材料。LANXIDE法工艺原理为:将连续纤维预成型坯件置于熔融金属上面,因毛细管作用,熔融金属向预成型体中渗透。由于熔融金属中含有少量添加剂,并处于空气或氧化气氛中,浸渍到纤维预成型体中的熔融金属与气相氧化剂反应形成氧化物基体,产生的氧化物沉积在纤维周围,形成含有少量残余金属的、致密的连续纤维增强陶瓷基复合材料。此种方法适用于制备以氧化铝为基体的陶瓷基复合材料,如SiC/A1203,在1200~C的抗弯强度为350MPa,断裂韧性为18 MPa·m1/2 ,室温时的抗弯强度为450 MPa,断裂韧性为21 M Pa·m1/2
3、溶胶-凝胶法
溶胶一凝胶法(Sol—ge1)是用有机先驱体制成的溶胶浸渍纤维预制体,然后水解、缩聚,形成凝胶,凝胶经干燥和热解后形成复合材料。此工艺组分纯度高,分散性好,而且热解温度不高(低于1400~C),溶胶易于润湿纤维,因此更利于制备连续纤维增强陶瓷基复合材料。该工艺缺点是:由于是用醇盐水解来制得基体,所以复合材料的致密性差,不经过多次浸渍很难达到致密化,且此工艺不适于部分非氧化物陶瓷基复合材料的制备。
Ⅶ 陶瓷基复合材料有什么作用
由纤维增强陶瓷的陶瓷基复合材料既可保留陶瓷材料耐高温、高硬高强和耐磨蚀的性能,同时又克服了陶瓷的脆性,陶瓷基复合材料可满足1200℃~1900℃的使用条件。人造地球卫星、载人宇宙飞船等的发射成功,取决于称为“烧蚀材料”的陶瓷基复合材料,当宇宙飞行器从外层空间返回地球时,稠密的大气层是它的必经之地,高速的飞行速度使飞行器和空气之间产生强烈的摩擦,由此而放出的热量瞬间可高达8000℃~10000℃,“烧蚀材料”此时吸收大量的热烧掉自己的一部分,与些同时使周围的温度降低,以保证飞行器本体安然无恙。
陶瓷基复合材料除了用于航空航天部件,还可用于滑动构件、发动机部件和刀件具等。法国用长纤维增强碳化硅复合材料作为超高速列车的制动机,其优异的摩擦磨损特性是传统制动件无法相比的。
陶瓷基复合材料以优异的耐高温和耐磨损性能取胜于其他复合材料,但由于价格昂贵使其应用受到一定限制。
先进复合材料为航天航空事业做出了重大贡献,最新研究结果表明,在某些特种飞机上先进复合材料用量已占50%以上,美国最新生产的具有隐身功能的轰炸机B-2,其机体的结构材料几乎全是复合材料。当今先进复合材料已广泛扩展到其他领域,如用复合材料制成的箭,其箭杆重量减轻4%,命中率也大大提高。在汽车工业领域,用先进复合材料制成的制件代替同样性能的钢制件,可减重70%左右,而且在工艺上可一次成型,可用来制造汽车车体、受力构件、发动机架和内部构件。先进复合材料在化工、纺织业、医疗和精密仪器等领域也发挥着不可估量的作用。
先进复合材料的研究十分活跃,发展趋向有以下特点:由宏观复合向微观复合发展;由增强性的双元混杂向超混杂复合发展;由结构复合向多功能复合发展。复合材料除具有力学性能外,还有其他如电、磁、光等性能。
Ⅷ 碳纤维陶瓷复合材料中碳纤维是基体
碳纤维增强复合材料,增强体当然是碳纤维.
金属基,基体就是金属,
陶瓷瓦不是专业术语啊,应该叫碳纤维增强陶瓷基复合材料,基体是陶瓷.
基体还有很多种类啊,比方说最常用的是树脂基复合材料,也叫碳/碳复合材料,水泥基复合材料等等.
不懂再问啊,有问必答!————除非不会……
Ⅸ 陶瓷基复合材料的介绍
陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮内化硅、碳容化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
Ⅹ 什么是陶瓷基复合材料
合成材料
合成材料又称人造材料,是人为地把不同物质经化学方法或聚合作用加工而成的材料,其特质与原料不同,如塑料、玻璃、钢铁等。
无机非金属材料
无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、棚化物以及硅酸盐、铝酸盐、磷酸盐、棚酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。元机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。元机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。在晶体结构上,元旦主企是材料的元素结合力主更主Af键、共价键主豆子-共价混合蟹。这些化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。元机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法。通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。传统的元机非金属材料是工业和基本建设所必需的基础材料。如水泥是一种重要的建筑材料;耐火材料与高温技术,尤其与钢铁工业的发展关系密切;各种规格的平板玻璃、仪器玻璃和普通的光学玻璃以及日用陶瓷、卫生陶瓷、建筑陶瓷、化工陶瓷和电瓷等与人们的生产、生活休戚相关。它们产量大,用途广。其他产品,如搪瓷、磨料(碳化硅、氧化铝)、铸石(辉绿岩、玄武岩等)、碳素材料、非金属矿(石棉、云母、大理石等)也都属于传统的无机非金属材料。新型元机非金属材料是20世纪中期以后发展起来的,具有特殊性能和用途的材料。它们是现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础。主要有先进陶瓷(advanced ceramics)、非晶态材料(noncrystal material〉、人工晶体〈artificial crys-tal〉、无机涂层(inorganic coating)、无机纤维(inorganic fibre〉等。
无机非金属材料的分类
(1)传统无机非金属材料:水泥、玻璃、陶瓷等硅酸材料。