当前位置:首页 » 粉末冶金 » 复合材料制备设备

复合材料制备设备

发布时间: 2021-03-14 00:07:36

『壹』 高分子复合材料制备需要哪些设备

您好 为您推荐泰州立普特高分子材料,专业生产制造特氟龙二十年!

『贰』 复合材料的制备方法

羟基磷来灰石(HA)是骨组织自的主要无机成分,其生物相容性好,具有较高的生物活性,能够与骨组织形成化学键合,但其脆性和不易加工性也限制了其应用。聚己内酯(PCL)是一种具有良好的生物相容性和物理机械性能的可降解聚酯材料,但缺乏生物活性。而天然骨主要是由纳米HA和胶原质构成的,可看作在基体中含有纳米晶体的双相复合材料。因此,从仿生角度出发,模拟人体骨的结构,以有机高分子特别是可降解高分子材料为基体,以HA为增强相制备的复合材料可以综合二者的性能,扬长避短,优势互补,可望得到一种理想的骨修复材料。

『叁』 什么是复合材料如何设计和制备复合材料

复合材料在弹性模量、线胀系数和材料强度等方面具有明显的各向异性性质。复合材料的各向异性虽然使分析工作复杂化了,但也给复合材料的设计提供了一个契机。人们可以根据不同方向上对刚度和强度等材料性能的特殊要求来设计复合材料及结构,制砂机生产厂家以满足工程实际中的特殊需要。复合材料的不均匀性也是其显著的特点。复合材料的几何非线性及物理非线性也是要特殊考虑的。复合材料的可设计性是它超过传统材料的最显著的优点之一。
复合材料具有不同层次上的宏观、细观和微观结构,如复合材料层合板中的纤维及纤维与基体的界面可视为微观结构,而层合板作为宏观结构,因此可采用细观力学理论和/ 或数值分析手段对其进行设计。1520反击破设计的复合材料可以在给定方向上具有所需要的刚度、强度及其他性能,而各向同性的传统材料则不具有这样的设计性。从复合材料的宏观、细观和微观结构角度来看,可将复合材料分为图3.1 所示的几种类型。
复合材料设计涉及多个变量的优化及多层次设计的选择。复合材料设计问题要求确定增强体的几何特征(连续纤维、颗粒等)、基体材料、增强材料和增强体的微观结构以及增强体的体积分数。要想通过对上述设计变量进行系统的优化是一件比较复杂的事情。数值优化技术对材料设计问题提供了一种可行的替代方法。例如,对复合材料的层合板进行设计,为冲击式破碎机 使其强度达到要求,可利用有限元法并结合适当的强度准则及本构模型对其进行材料及结构参数的优化;对复合材料壳体进行设计,为使其稳定性达到要求,可利用有限元法并结合相应的失稳模式及准则对其进行系统优化。

『肆』 目前金属基复合材料的制备工艺主要有哪些

(一)粉末冶金复合法
粉末冶金复合法基本原理与常规的粉末冶金法相同,包括烧结成形法、烧结制坯加塑法加工成形法等适合于分散强化型复合材料(颗粒强化或纤维强化型复合材料)的制备与成型。粉末冶金复合法的工艺主要优点是:基体金属或合金的成分可自由选择,基体金属与强化颗粒之间不易发生反应;可自由选择强化颗粒的种类、尺寸,还可多种颗粒强化;强化颗粒添加量的范围大;较容易实现颗粒均匀化。缺点是:工艺复杂,成本高;制品形状、尺寸受限制;微细强化颗粒的均匀分散困难;颗粒与基体的界面不如铸造复合材料等。
(二)铸造凝固成型法
铸造凝固成型法是在基体金属处于熔融状态下进行复合。主要方法有搅拌铸造法、液相渗和法和共喷射沉积法等。铸造凝固成型铸造复合材料具有工艺简单化、制品质量好等特点,工业应用较广泛。
1、原生铸造复合法
原生铸造复合法(也称液相接触反应合成技术Liquid Contact Reaction:LCR)是将生产强化颗粒的原料加到熔融基体金属中,利用高温下的化学反应强化相,然后通过浇铸成形。这种工艺的特点是颗粒与基体材料之间的结合状态良好,颗粒细小(0.25~1.5μm),均匀弥散,含量可高达40%,故能获得高性能复合材料。常用的元素粉末有钛、碳、硼等,化合物粉末有Al2O3、TiO2、B2O3等。该方法可用于制备A1基、Mg基、Cu基、Ti基、Fe基、Ni基复合材料,强化相可以是硼化物、碳化物、氮化物等。
2、搅拌铸造法
搅拌铸造法也称掺和铸造法等,是在熔化金属中加入陶瓷颗粒,经均匀搅拌后浇入铸模中获得制品或二次加工坯料,此法易于实现能大批量生成,成本较低。该方法在铝基复合材料的制备方面应用较广,但其主要缺点是基体金属与强化颗粒的组合受限制。原因有两方面:①强化颗粒与熔体基本金属之间容易产生化学反应;②强化颗粒不易均匀分散在铝合金一类的合金熔体中,这是由于陶瓷颗粒与铝合金的润滑性较差,另一个问题是陶瓷颗粒容易与溶质原子一起在枝晶间产生偏析。
3、半固态复合铸造法
半固态复合铸造法是从半固态铸造法发展而来的。通常金属凝固时,初生晶以枝晶方式长大,固相率达0.2%左右时枝晶就形成连续网络骨架,失去宏观流动性。如果在液态金属从液相到固相冷却过程中进行强烈搅拌则使树枝晶网络骨架被打碎而保留分散的颗粒状组织形态,悬浮于剩余液相中,这种颗粒状非枝晶的微组织在固相率达0.5%~0.6%仍具有一定的流变性。液固相共存的半固态合金因具有流变性,可以进行流变铸造;半固态浆液同时具有触变性,可将流变铸锭重新加热到固、液相变点软化,由于压铸时浇口处及型壁的剪切作用,可恢复流变性而充满铸型。强化颗粒或短纤维强化材料加入到受强烈搅拌的半固态合金中,由于半固态浆液球状碎晶粒对添加颗粒的分散和捕捉作用,既防止颗粒的凝聚和偏析,又使颗粒在浆液中均匀分布,改善了润湿性并促进界面的结合。
4、含浸凝固法(MI技术)
含浸凝固法是一种将预先制备的含有较高孔隙率的强化相成形体含浸于熔融基体金属之中,让基体金属浸透预成型体后,使其凝固以制备复合材料的方法。有加压含浸和非加压含浸两种方法。含浸法适合于强化相与熔融基体金属之间润湿性很差的复合材料的制备。强化相含量可高达30%~80%;强化相与熔融金属之间的反应得到抑止,不易产生偏折。但用颗粒作强化相时,预成形体的制备较困难,通常采用晶须、短纤维制备预成形体。熔体金属不易浸透至预成形体的内部,大尺寸复合材料的制备较困难。
5、离心铸造法
广泛应用于空心件铸造成形的离心铸造法,可以通过两次铸造成型法成形双金属层状复合材料,此方法简单,具有成本低、铸件致密度高等优点,但是界面质量不易控制,难以形成连续长尺寸的复合材料。
6、加压凝固铸造法
该法是将金属液浇注铸型后,加压使金属液在压力下凝固。金属从液态到凝固均处于高压下,故能充分浸渗,补缩并防止产生气孔,得到致密铸件。铸、锻相结合的方法又称挤压铸造、液态模锻、锻铸法等。加压凝固铸造法可制备较复杂的MMCs零件,亦可局部增强。由于复合材料易在熔融状态下压力复合,故结合十分牢固,可获得力学性能很高的零件。这种高温下制成的复合坯,二次成型比较方便,可进行各种热处理,达到对材料的多种要求。
7、热浸镀与反向凝固法
热浸镀与反向凝固法都是用来制备连续长尺寸包覆材料的方法。热浸镀主要用于线材的连续镀层,主要控制通过镀层区的长度和芯线通过该区的速度等。反向凝固法是利用薄带作为母带,以一定的拉速穿过反向凝固器,由于母带的速度远远低于熔融金属的速度,在母带的表面附近形成足够大的过冷度,熔融金属以母带表面开始凝固生长,配置在反向凝固器上方的一对轧辊,同时起到拉坯平整和焊合的作用。
8、真空铸造法
真空铸造法是先将连续纤维缠绕在绕线机上,用聚甲丙烯酸等能分解的有机高分子化合物方法制成半固化带,把预成型体放入铸型中,加热到500℃使有机高分子分解。铸型的一端浸入基体金属液,另一端抽真空,将金属液吸入型腔浸透纤维。
(三)喷射成形法
喷射成形又称喷射沉积(Spray Forming),是用惰性气体将金属雾化成微小的液滴,并使之向一定方向喷射,在喷射途中与另一路由惰性气体送出的增强微细颗粒会合,共同喷射沉积在有水冷衬底的平台上,凝固成复合材料。凝固的过程比较复杂,与金属的雾化情况、沉积凝固条件或增强体的送入角有关,过早凝固不能复合,过迟的凝固则使增强体发生上浮下沉而分布不匀。这种方法的优点是工艺快速,金属大范围偏析和晶粒粗化可以得到抑制,避免复合材料发生界面反应,增强体分布均匀。缺点是出现原材料被气流带走和沉积在效应器壁上等现象而损失较大,还有复合材料气孔率以及容易出现的疏松。利用喷射成形原理制备工艺有添加法(inert spray form-ing)和反应法(reactive spray forming)两种。Osprey Metals研究的Osprey工艺是喷射成形法的代表,其强化颗粒与熔融金属接触时间短,界面反应得以有效抑制。反应喷射沉积法是使强化陶瓷颗粒在金属雾或基体中自动生成的方法。
(四)叠层复合法
叠层复合法是先将不同金属板用扩散结合方法复合,然后采用离子溅射或分子束外延方法交替地将不同金属或金属与陶瓷薄层叠合在一起构成金属基复合材料。这种复合材料性能很好,但工艺复杂难以实用化。目前这种材料的应用尚不广泛,过去主要少量应用或试用于航空、航天及其它军用设备上,现在正努力向民用方向转移,特别是在汽车工业上有很好的发展前景。
(五)原位生成复合法
原位生成复合法也称反应合成技术,金属基复合材料的反应合成法是指借助化学反应,在一定条件下在基体金属内原位生成一种或几种热力学稳定的增强相的一种复合方法。这种增强相一般为具有高硬度、高弹性模量和高温强度的陶瓷颗粒,即氧化物、碳化物、氯化物、硼化物、甚至硅化物,它们往往与传统的金属材料,如Al、Mg、Ti、Fe、Cu等金属及其合金,或(NiTi)(、AlTi)等金属间化合物复合,从而得到具有优良性能的结构材料或功能材料。
金属基复合材料的原位复合工艺基本上能克服其它工艺中常出现的一系列问题,如基体与增强体浸润不良、界面反应产生脆性、增强体分布不均匀、对微小的(亚微米和纳米级)增强体极难进行复合等。它作为一种具有突破性的新工艺方法而受到普遍的重视,其中包括直接氧化法、自蔓延法和原位共晶生长法等。
1、直接氧化(DIMON)法
直接氧化法是由氧化性气体在一定工艺条件下使金属合金液直接氧化形成复合材料。通常直接氧化法的温度比较高,添加适量的合金元素如Mg、Si等,可使反应速度加快。这类复合材料的强度、韧性取决于形成粒子的状态和最终显微组织形态。由于形成的增强体可以通过合金化及其反应热力学进行判断,因此可以通过合金化、炉内气氛的控制来制得不同类型增强体的复合材料。
2、放热弥散(XD)法
放热弥散复合技术(Exothermic Dispersion)的基本原理是将增强相反应物料与金属基粉末按一定的比例均匀混合,冷压或热压成型,制成坯块,以一定的加热速率加热,在一定的温度下(通常是高于基体的熔点而低于增强相的熔点)保温,使增强相各组分之间进行放热化学反应,生成增强相。增强相尺寸细小,呈弥散分布。XD技术具有很多优点:①可合成的增强相种类多,包括硼化物、碳化物、硅化物等;②增强相粒子的体积百分比可以通过控制增强相组分物料的比例和含量加以控制;③增强相粒子的大小可以通过调节加热温度加以控制;④可以制备各种MMC;⑤由于反应是在融熔状态下进行,可以进一步近终形成型。XD技术是合成颗粒增强金属基及金属间化合物基复合材料的最有效的工艺之一。但用XD工艺制成的产品存在着较大孔隙度的问题,目前一般采用在反应过程中直接压实来提高致密度。
3、 SHS-铸渗法
SHS-铸渗法是将金属基复合材料的自蔓延高温合成技术(Self-Propagating High Temperature Synthesis)和液态铸造法结合起来的一种新技术,包括增强颗粒的原位合成和铸造成型两个过程。当前,SHS-铸渗法是有竞争力的反应合成工艺之一,但过程控制非常困难。其典型工艺为:利用合金熔体的高温引燃铸型中的固体SHS系,通过控制反应物和生成物的位置,在铸件表面形成复合涂层,它可使SHS材料合成与致密化、铸件的成形与表面涂层的制备同时完成。
4、反应喷射沉积技术(RSD)
反应喷射沉积工艺(Reactive Spray Deposition)生成陶瓷颗粒的反应有气—液反应、液—液反应、固—液反应和加盐反应等多种类型。它综合了快速凝固及粉末冶金的优点,并克服了喷射共沉积工艺中存在的如颗粒与基体接近机械结合、增强相体积分数不能太高等缺点,成为目前金属基复合材料研究的重要方向之一。反应喷射沉积工艺过程为:金属液被雾化前喷入高活性的固体颗粒发生液固反应,导致喷入的颗粒在雾化过程中溶解并与基体中的一种或多种元素反应形成稳定的弥散相,控制喷雾的冷却速率以及随后坯件的冷却速率可以控制弥散相的尺寸。

『伍』 描述高分子复合材料的基本类型及其制备工艺

两种或两种以上物理抄和化学性质不同的物质组合而成的一种多相固体材料。
复合材料应满足下面三个条件:
(1)组元含量大于5 %;
(2)复合材料的性能显著不同于各组元的性能;
(3)通过各种方法混合而成。
复合材料由基体和增强剂两个组分构成。
基体:构成复合材料的连续相;
增强剂(增强相、增强体):复合材料中独立的形态分布在整个基体中的分散相,这种分散相的性能优越,会使材料的性能显著改善和增强。

『陆』 耐磨复合材料有哪些制备方法

1、料浆浸渍和热压烧结法
料浆浸渍和热压烧结法的基本原理是将具有可烧结性的基体原料粉末与连续纤维用浸渍工艺制成坯件,然后高温下加压烧结,使基体材料与纤维结合成复合材料 。
2、直接氧化沉积法
直接氧化沉积法最早被用于制备A12O3/A1复合材料,后推广用于制备连续纤维增强氧化物陶瓷基复合材料。LANXIDE法工艺原理为:将连续纤维预成型坯件置于熔融金属上面,因毛细管作用,熔融金属向预成型体中渗透。由于熔融金属中含有少量添加剂,并处于空气或氧化气氛中,浸渍到纤维预成型体中的熔融金属与气相氧化剂反应形成氧化物基体,产生的氧化物沉积在纤维周围,形成含有少量残余金属的、致密的连续纤维增强陶瓷基复合材料。此种方法适用于制备以氧化铝为基体的陶瓷基复合材料,如SiC/A1203,在1200~C的抗弯强度为350MPa,断裂韧性为18 MPa·m1/2 ,室温时的抗弯强度为450 MPa,断裂韧性为21 M Pa·m1/2
3、溶胶-凝胶法
溶胶一凝胶法(Sol—ge1)是用有机先驱体制成的溶胶浸渍纤维预制体,然后水解、缩聚,形成凝胶,凝胶经干燥和热解后形成复合材料。此工艺组分纯度高,分散性好,而且热解温度不高(低于1400~C),溶胶易于润湿纤维,因此更利于制备连续纤维增强陶瓷基复合材料。该工艺缺点是:由于是用醇盐水解来制得基体,所以复合材料的致密性差,不经过多次浸渍很难达到致密化,且此工艺不适于部分非氧化物陶瓷基复合材料的制备。

『柒』 复合材料制备过程中的工艺要素有哪些

抽真空 6. 准备原料 2. 做真空包 5. 固化成碳板 7. 准备工艺托盘 3. 在工艺托盘上铺贴碳纤维 41

『捌』 哪些属于新型纤维及复合材料制备技术

碳纤维属于来复合材料。 因为碳源纤维不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维,所以是复合材料。 简介: 一、碳纤维: 碳纤维(carbon fiber,简称CF),是一种含碳量在95%以上的高强度、高模量纤维的新型纤维.

『玖』 生产复合材料铺放和缠绕设备的厂家有哪些

哈波所、青海重型机床厂、宝鸡机床厂。

『拾』 纳米tio2复合材料的制备方法有哪些

(1)电弧放电法
电弧放电法是制备纳米碳管最原始的方法,该方法也用于专制备其它属一维纳米材料。
(2)化学气相沉积法
化学气相沉积法通常是指反应物经过化学反应和凝结过程
,生产特定产物的方法。
(3)激光溅射法
(包括激光沉积法
)
激光溅射法也是制备一维纳米材料的重要方法。激光溅射法所用的设备包括激光源、聚光镜、目标靶、管式炉、冷却环、真空泵和气流阀等几个部分组成。
(4)液相合成法
液相合成法又称湿化学法,它包含了水热法、溶剂热法和微乳液法等通过溶液生长合成一维纳米材料的方法。

热点内容
三个字的电影名 发布:2024-08-19 09:10:03 浏览:417
台湾红羊经典电影 发布:2024-08-19 09:02:17 浏览:767
搞笑电影范冰冰梁家辉开战 发布:2024-08-19 08:53:18 浏览:917
免费午夜激情 发布:2024-08-19 08:42:15 浏览:831
40分钟左右的英语电影 发布:2024-08-19 08:28:43 浏览:695
电影宋基美娜 发布:2024-08-19 08:27:04 浏览:942
宿舍都变成女的的电影 发布:2024-08-19 07:59:35 浏览:897
台湾恐怖片丧尸 发布:2024-08-19 07:57:21 浏览:179
免费观看qq群 发布:2024-08-19 07:53:00 浏览:921
4级片名字 发布:2024-08-19 07:39:14 浏览:553