迪芬巴赫复合材料
A. 稀土有何作用主要用在哪些领域
稀土家族是来自镧系的15个元素,加上与镧系相关密切的钪和钇共17种元素。它们是:镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钪、钇。
由于特殊的原子结构,稀土家族的成员非常的活泼,且个个身手不凡,魔力无边。它们与其他元素结合,便可组成品类繁多、功能千变万化、用途各异的新型材料,且性能翻番提高,被称作当代的“工业味精”。
如:在超音速飞机中应用含稀土的АЦР1和ЖП207合金,可在400℃以下长期工作,它是现今高温性能最好的合金之一,它的持久强度比一般铝合金可提高1~2倍;
钢中加入稀土后,制成的薄料横向冲击韧性提高50%以上,耐腐蚀性能提高60%,而每吨钢只要加稀土300克左右,作用十分显著,真可谓四两拨千斤;
稀土添加在酸性纺织染料中,可以提高上染率、调整染料和纤维的亲和力、提高染色牢度、改善纤维的色泽、外观质量及手感柔软度、并可节约染料及减少环境污染和减轻劳动强度等;
稀土元素可以提高植物的叶绿素含量、增强光合作用、促进根系的发育和对养分的吸收。还能促进种子萌发、促进幼苗生长,还具有使作物增强抗病、抗寒、抗旱的能力;
用稀土钷作热源,可为真空探测和人造卫星提供辅助能量。钷电池可作为导弹制导仪器及钟表的电源,此种电池体积小,能连续使用数年之久。
在今天的世界上,无论是航天、航空、军事等高科技领域,还是人们的日常生活用品,无论工业、农牧业、还是化学、生物学、医药,稀土的应用及其作用几乎是无所不在,无所不能。
17种稀土元素名称的由来及用途浅说
镧(La)
??“镧”这个元素是1839年被命名的,当时有个叫“莫桑德”的瑞典人发现铈土中含有其它元素,他借用希腊语中“隐藏”一词把这种元素取名为“镧”。从此,镧便登上了历史舞台。
??镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与“超级钙”的美称。
铈(Ce)
??“铈”这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星——谷神星。
??铈广泛应用于(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约一千多吨。(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。美国在这方面的消费量占稀土总消费量的三分之一强。(3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。(4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。
镨(Pr)
??大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为“镨钕”。“镨钕”希腊语为“双生子”之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从“镨钕”中分离出了两个元素,一个取名为“钕”,另一个则命名为“镨”。这种“双生子”被分隔开了,镨元素也有了自己施展才华的广阔天地。
??镨是用量较大的稀土元素,其主要用于玻璃、陶瓷和磁性材料中。(1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。(2)用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马达上。(3)用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,用量不断增大。(4)镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。
钕(Nd)
??伴随着镨元素的诞生,钕元素也应运而生,钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。
??钕元素凭借其在稀土领域中的独特地位,多年来成为市场关注的热点。金属钕的最大用户是钕铁硼永磁材料。钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。钕铁硼磁体磁能积高,被称作当代“永磁之王”,以其优异的性能广泛用于电子、机械等行业。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。钕还应用于有色金属材料。在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。
钷(Pm)
??1947年,马林斯基(J.A.Marinsky)、格伦丹宁(L.E.Glendenin)和科里尔(C.E.Coryell)从原子能反应堆用过的铀燃料中成功地分离出61号元素,用希腊神话中的神名普罗米修斯(Prometheus)命名为钷(Promethium)。
??钷为核反应堆生产的人造放射性元素。钷的主要用途有(1)可作热源。为真空探测和人造卫星提供辅助能量。(2)Pm147放出能量低的β射线,用于制造钷电池。作为导弹制导仪器及钟表的电源。此种电池体积小,能连续使用数年之久。此外,钷还用于便携式X-射线仪、制备荧光粉、度量厚度以及航标灯中。
钐(Sm)
??1879年,波依斯包德莱从铌钇矿得到的“镨钕”中发现了新的稀土元素,并根据这种矿石的名称命名为钐。
??钐呈浅黄色,是做钐钴系永磁体的原料,钐钴磁体是最早得到工业应用的稀土磁体。这种永磁体有SmCo5系和Sm2Co17系两类。70年代前期发明了SmCo5系,后期发明了Sm2Co17系。现在是以后者的需求为主。钐钴磁体所用的氧化钐的纯度不需太高,从成本方面考虑,主要使用95%左右的产品。此外,氧化钐还用于陶瓷电容器和催化剂方面。另外,钐还具有核性质,可用作原子能反应堆的结构材料,屏敝材料和控制材料,使核裂变产生巨大的能量得以安全利用。
铕(Eu)
??1901年,德马凯(Eugene-Antole Demarcay)从“钐”中发现了新元素,取名为铕(Europium)。这大概是根据欧洲(Europe)一词命名的。氧化铕大部分用于荧光粉。Eu3+用于红色荧光粉的激活剂,Eu2+用于蓝色荧光粉。现在Y2O2S:Eu3+是发光效率、涂敷稳定性、回收成本等最好的荧光粉。再加上对提高发光效率和对比度等技术的改进,故正在被广泛应用。近年氧化铕还用于新型X射线医疗诊断系统的受激发射荧光粉。氧化铕还可用于制造有色镜片和光学滤光片,用于磁泡贮存器件,在原子反应堆的控制材料、屏敝材料和结构材料中也能一展身手。
钆(Gd)
??1880年,瑞士的马里格纳克(G.de Marignac)将“钐”分离成两个元素,其中一个由索里特证实是钐元素,另一个元素得到波依斯包德莱的研究确认,1886年,马里格纳克为了纪念钇元素的发现者 研究稀土的先驱荷兰化学家加多林(Gado Linium),将这个新元素命名为钆。
??钆在现代技革新中将起重要作用。它的主要用途有:(1)其水溶性顺磁络合物在医疗上可提高人体的核磁共振(NMR)成像信号。(2)其硫氧化物可用作特殊亮度的示波管和x射线荧光屏的基质栅网。(3)在钆镓石榴石中的钆对于磁泡记忆存储器是理想的单基片。(4)在无Camot循环限制时,可用作固态磁致冷介质。(5)用作控制核电站的连锁反应级别的抑制剂,以保证核反应的安全。(6)用作钐钴磁体的添加剂,以保证性能不随温度而变化。另外,氧化钆与镧一起使用,有助于玻璃化区域的变化和提高玻璃的热稳定性。氧化钆还可用于制造电容器、x射线增感屏。
??在世界上目前正在努力开发钆及其合金在磁致冷方面的应用,现已取得突破性进展,室温下采用超导磁体、金属钆或其合金为致冷介质的磁冰箱已经问世。
铽(Tb)
??1843年瑞典的莫桑德(Karl G.Mosander)通过对钇土的研究,发现铽元素(Terbium)。铽的应用大多涉及高技术领域,是技术密集、知识密集型的尖端项目,又是具有显著经济效益的项目,有着诱人的发展前景。主要应用领域有:(1)荧光粉用于三基色荧光粉中的绿粉的激活剂,如铽激活的磷酸盐基质、铽激活的硅酸盐基质、铽激活的铈镁铝酸盐基质,在激发状态下均发出绿色光。(2)磁光贮存材料,近年来铽系磁光材料已达到大量生产的规模,用Tb-Fe非晶态薄膜研制的磁光光盘,作计算机存储元件,存储能力提高10~15倍。(3)磁光玻璃,含铽的法拉第旋光玻璃是制造在激光技术中广泛应用的旋转器、隔离器和环形器的关键材料。特别是铽镝铁磁致伸缩合金(TerFenol)的开发研制,更是开辟了铽的新用途,Terfenol是70年代才发现的新型材料,该合金中有一半成份为铽和镝,有时加入钬,其余为铁,该合金由美国依阿华州阿姆斯实验室首先研制,当Terfenol置于一个磁场中时,其尺寸的变化比一般磁性材料变化大,这种变化可以使一些精密机械运动得以实现。铽镝铁开始主要用于声纳,目前已广泛应用于多种领域,从燃料喷射系统、液体阀门控制、微定位到机械致动器、太空望远镜的调节机构和飞机机翼调节器等领域。
镝(Dy)
??1886年,法国人波依斯包德莱成功地将钬分离成两个元素,一个仍称为钬,而另一个根据从钬中“难以得到”的意思取名为镝(dysprosium)。镝目前在许多高技术领域起着越来越重要的作用,镝的最主要用途是(1)作为钕铁硼系永磁体的添加剂使用,在这种磁体中添加2~3%左右的镝,可提高其矫顽力,过去镝的需求量不大,但随着钕铁硼磁体需求的增加,它成为必要的添加元素,品位必须在95~99.9%左右,需求也在迅速增加。(2)镝用作荧光粉激活剂,三价镝是一种有前途的单发光中心三基色发光材料的激活离子,它主要由两个发射带组成,一为黄光发射,另一为蓝光发射,掺镝的发光材料可作为三基色荧光粉。(3)镝是制备大磁致伸缩合金铽镝铁(Terfenol)合金的必要的金属原料,能使一些机械运动的精密活动得以实现。(4)镝金属可用做磁光存贮材料,具有较高的记录速度和读数敏感度。(5)用于镝灯的制备,在镝灯中采用的工作物质是碘化镝,这种灯具有亮度大、颜色好、色温高、体积小、电弧稳定等优点,已用于电影、印刷等照明光源。(6)由于镝元素具有中子俘获截面积大的特性,在原子能工业中用来测定中子能谱或做中子吸收剂。(7)Dy3Al5O12还可用作磁致冷用磁性工作物质。随着科学技术的发展,镝的应用领域将会不断的拓展和延伸。
钬(Ho)
??十九世纪后半叶,由于光谱分析法的发现和元素周期表的发表,再加上稀土元素电化学分离工艺的进展,更加促进了新的稀土元素的发现。1879年,瑞典人克利夫发现了钬元素并以瑞典首都斯德哥尔摩地名命名为钬(holmium)。
??钬的应用领域目前还有待于进一步开发,用量不是很大,最近,包钢稀土研究院采用高温高真空蒸馏提纯技术,研制出非稀土杂质含量很低的高纯金属钬Ho/∑RE>99.9%。目前钬的主要用途有:用作金属卤素灯添加剂,金属卤素灯是一种气体放电灯,它是在高压汞灯基础上发展起来的,其特点是在灯泡里充有各种不同的稀土卤化物。目前主要使用的是稀土碘化物,在气体放电时发出不同的谱线光色。在钬灯中采用的工作物质是碘化钬,在电弧区可以获得较高的金属原子浓度,从而大大提高了辐射效能。(2)钬可以用作钇铁或钇铝石榴石的添加剂;(3)掺钬的钇铝石榴石(Ho:YAG)可发射2μm激光,人体组织对2μm激光吸收率高,几乎比Hd:YAG高3个数量级。所以用Ho:YAG激光器进行医疗手术时,不但可以提高手术效率和精度,而且可使热损伤区域减至更小。钬晶体产生的自由光束可消除脂肪而不会产生过大的热量,从而减少对健康组织产生的热损伤,据报道美国用钬激光治疗青光眼,可以减少患者手术的痛苦。我国2μm激光晶体的水平已达到国际水平,应大力开发生产这种激光晶体。(4)在磁致伸缩合金Terfenol-D中,也可以加入少量的钬,从而降低合金饱和磁化所需的外场。(5)另外用掺钬的光纤可以制作光纤激光器、光纤放大器、光纤传感器等等光通讯器件在光纤通信迅猛的今天将发挥更重要的作用。
铒(Er)
??1843年,瑞典的莫桑德发现了铒元素(Erbium)。铒的光学性质非常突出,一直是人们关注的问题:(1)Er3+在1550nm处的光发射具有特殊意义,因为该波长正好位于光纤通讯的光学纤维的最低损失,铒离子(Er3+)受到波长980nm、1480nm的光激发后,从基态4I15/2跃迁至高能态4I13/2,当处于高能态的Er3+再跃迁回至基态时发射出1550nm波长的光,石英光纤可传送各种不同波长的光,但不同的光光衰率不同,1550nm频带的光在石英光纤中传输时光衰减率最低(0.15分贝/公里),几乎为下限极限衰减率。因此,光纤通信在1550nm处作信号光时,光损失最小。这样,如果把适当浓度的铒掺入合适的基质中,可依据激光原理作用,放大器能够补偿通讯系统中的损耗,因此在需要放大波长1550nm光信号的电讯网络中,掺铒光纤放大器是必不可少的光学器件,目前掺铒的二氧化硅纤维放大器已实现商业化。据报道,为避免无用的吸收,光纤中铒的掺杂量几十至几百ppm。光纤通信的迅猛发展,将开辟铒的应用新领域。(2)另外掺铒的激光晶体及其输出的1730nm激光和1550nm激光对人的眼睛安全,大气传输性能较好,对战场的硝烟穿透能力较强,保密性好,不易被敌人探测,照射军事目标的对比度较大,已制成军事上用的对人眼安全的便携式激光测距仪。(3)Er3+加入到玻璃中可制成稀土玻璃激光材料,是目前输出脉冲能量最大,输出功率最高的固体激光材料。(4)Er3+还可做稀土上转换激光材料的激活离子。(5)另外铒也可应用于眼镜片玻璃、结晶玻璃的脱色和着色等。
铥(Tm)
??铥元素是1879年瑞典的克利夫发现的,并以斯堪迪那维亚(Scandinavia)的旧名Thule命名为铥(Thulium)。
??铥的主要用途有以下几个方面:(1)铥用作医用轻便X光机射线源,铥在核反应堆内辐照后产生一种能发射X射线的同位素,可用来制造便携式血液辐照仪上,这种辐射仪能使铥-169受到高中子束的作用转变为铥-170,放射出X射线照射血液并使白血细胞下降,而正是这些白细胞引起器官移植排异反应的,从而减少器官的早期排异反应。(2)铥元素还可以应用于临床诊断和治疗肿瘤,因为它对肿瘤组织具有较高亲合性,重稀土比轻稀土亲合性更大,尤其以铥元素的亲合力最大。(3)铥在X射线增感屏用荧光粉中做激活剂LaOBr:Br(蓝色),达到增强光学灵敏度,因而降低了X射线对人的照射和危害,与以前钨酸钙增感屏相比可降低X射线剂量50%,这在医学应用具有重要现实的意义。(4)铥还可在新型照明光源 金属卤素灯做添加剂。(5)Tm3+加入到玻璃中可制成稀土玻璃激光材料,这是目前输出脉冲量最大,输出功率最高的固体激光材料。Tm3+也可做稀土上转换激光材料的激活离子。
镱(Yb)
??1878年,查尔斯(Jean Charles)和马利格纳克(G.de Marignac)在“铒”中发现了新的稀土元素,这个元素由伊特必(Ytterby)命名为镱(Ytterbium)。
??镱的主要用途有(1)作热屏蔽涂层材料。镱能明显地改善电沉积锌层的耐蚀性,而且含镱镀层比不含镱镀层晶粒细小,均匀致密。(2)作磁致伸缩材料。这种材料具有超磁致伸缩性即在磁场中膨胀的特性。该合金主要由镱/铁氧体合金及镝/铁氧体合金构成,并加入一定比例的锰,以便产生超磁致伸缩性。(3)用于测定压力的镱元件,试验证明,镱元件在标定的压力范围内灵敏度高,同时为镱在压力测定应用方面开辟了一个新途径。(4)磨牙空洞的树脂基填料,以替换过去普遍使用银汞合金。(5)日本学者成功地完成了掺镱钆镓石榴石埋置线路波导激光器的制备工作,这一工作的完成对激光技术的进一步发展很有意义。另外,镱还用于荧光粉激活剂、无线电陶瓷、电子计算机记忆元件(磁泡)添加剂、和玻璃纤维助熔剂以及光学玻璃添加剂等。
镥(Lu)
??1907年,韦尔斯巴赫和尤贝恩(G.Urn)各自进行研究,用不同的分离方法从“镱”中又发现了一个新元素,韦尔斯巴赫把这个元素取名为Cp(Cassiopeium),尤贝恩根据巴黎的旧名lutece将其命名为Lu(Lutetium)。后来发现Cp和Lu是同一元素,便统一称为镥。
??镥的主要用途有(1)制造某些特殊合金。例如镥铝合金可用于中子活化分析。(2)稳定的镥核素在石油裂化、烷基化、氢化和聚合反应中起催化作用。(3)钇铁或钇铝石榴石的添加元素,改善某些性能。(4)磁泡贮存器的原料。(5)一种复合功能晶体掺镥四硼酸铝钇钕,属于盐溶液冷却生长晶体的技术领域,实验证明,掺镥NYAB晶体在光学均匀性和激光性能方面均优于NYAB晶体。(6)经国外有关部门研究发现,镥在电致变色显示和低维分子半导体中具有潜在的用途。此外,镥还用于能源电池技术以及荧光粉的激活剂等。
钇(Y)
??1788年,一位以研究化学和矿物学、收集矿石的业余爱好者瑞典军官卡尔·阿雷尼乌斯(Karl Arrhenius)在斯德哥尔摩湾外的伊特必村(Ytterby),发现了外观象沥青和煤一样的黑色矿物,按当地的地名命名为伊特必矿(Ytterbite)。1794年芬兰化学家约翰·加多林分析了这种伊特必矿样品。发现其中除铍、硅、铁的氧化物外,还含有约38%的未知元素的氧化物枣“新土”。1797年,瑞典化学家埃克贝格(Anders Gustaf Ekeberg)确认了这种“新土”,命名为钇土(Yttria,钇的氧化物之意)。
??钇是一种用途广泛的金属,主要用途有:(1)钢铁及有色合金的添加剂。FeCr合金通常含0.5-4%钇,钇能够增强这些不锈钢的抗氧化性和延展性;MB26合金中添加适量的富钇混合稀土后,合金的综合性能得到明显的改善,可以替代部分中强铝合金用于飞机的受力构件上;在Al-Zr合金中加入少量富钇稀土,可提高合金导电率;该合金已为国内大多数电线厂采用;在铜合金中加入钇,提高了导电性和机械强度。(2)含钇6%和铝2%的氮化硅陶瓷材料,可用来研制发动机部件。(3)用功率400瓦的钕钇铝石榴石激光束来对大型构件进行钻孔、切削和焊接等机械加工。(4)由Y-Al石榴石单晶片构成的电子显微镜荧光屏,荧光亮度高,对散射光的吸收低,抗高温和抗机械磨损性能好。(5)含钇达90%的高钇结构合金,可以应用于航空和其它要求低密度和高熔点的场合。(6)目前倍受人们关注的掺钇SrZrO3高温质子传导材料,对燃料电池、电解池和要求氢溶解度高的气敏元件的生产具有重要的意义。此外,钇还用于耐高温喷涂材料、原子能反应堆燃料的稀释剂、永磁材料添加剂以及电子工业中作吸气剂等。
钪(Sc)
??1879年,瑞典的化学教授尼尔森(L.F.Nilson, 1840~1899)和克莱夫(P.T.Cleve, 1840~1905)差不多同时在稀有的矿物硅铍钇矿和黑稀金矿中找到了一种新元素。他们给这一元素定名为“Scandium”(钪),钪就是门捷列夫当初所预言的“类硼”元素。他们的发现再次证明了元素周期律的正确性和门捷列夫的远见卓识。
??钪比起钇和镧系元素来,由于离子半径特别小,氢氧化物的碱性也特别弱,因此,钪和稀土元素混在一起时,用氨(或极稀的碱)处理,钪将首先析出,故应用“分级沉淀”法可比较容易地把它从稀土元素中分离出来。另一种方法是利用硝酸盐的分极分解进行分离,由于硝酸钪最容易分解,从而达到分离的目的。
??用电解的方法可制得金属钪,在炼钪时将ScCl3、KCl、LiCl共熔,以熔融的锌为阴极电解之,使钪在锌极上析出,然后将锌蒸去可得金属钪。另外,在加工矿石生产铀、钍和镧系元素时易回收钪。钨、锡矿中综合回收伴生的钪也是钪的重要来源之一。
??钪在化合物中主要呈3价态,在空气中容易氧化成Sc2O3而失去金属光泽变成暗灰色。
??钪能与热水作用放出氢,也易溶于酸,是一种强还原剂。
??钪的氧化物及氢氧化物只显碱性,但其盐灰几乎不能水解。钪的氯化物为白色结晶,易溶于水并能在空气中潮解。
??在冶金工业中,钪常用于制造合金(合金的添加剂),以改善合金的强度、硬度和耐热和性能。如,在铁水中加入少量的钪,可显著改善铸铁的性能,少量的钪加入铝中,可改善其强度和耐热性。
??在电子工业中,钪可用作各种半导体器件,如钪的亚硫酸盐在半导体中的应用已引起了国内外的注意,含钪的铁氧体在计算机磁芯中也颇有前途。
??在化学工业上,用钪化合物作酒精脱氢及脱水剂,生产乙烯和用废盐酸生产氯时的高效催化剂。
??在玻璃工业中,可以制造含钪的特种玻璃。
??在电光源工业中,含钪和钠制成的钪钠灯,具有效率高和光色正的优点。
??自然界中钪均以45Sc形式存在,另外,钪还有9种放射性同位素,即40~44Sc和46~49Sc。其中,46Sc作为示踪剂,已在化工、冶金及海洋学等方面使用。在医学上,国外还有人研究用46Sc来医治癌症。钪的性质及用途。
B. 硅灰石(Wollastonite)
一、概述
硅灰石是一种天然产出的偏硅酸钙(Ca3[Si3O9]),理论化学成分CaO48.3%、SiO251.7%。其中的Ca2+离子易被少量的Fe2+、Mn2+、Mg2+、Sr2+等离子呈类质同象形式替代。硅灰石有三种同质多象变体:两种低温相变体,即三斜晶系硅灰石和单斜晶系副硅灰石;一种高温相即假硅灰石。硅灰石与假硅灰石的转化温度为(1120±20)℃,转化较缓慢,随着温度升高,转化时间将明显缩短。自然界常见的硅灰石主要是低温三斜硅灰石,其他两种象变体很少见。
硅灰石晶体沿b轴多发育为柱状、针状,其长度与直径比值即长径比为(10~7):1,比值高的可达(15~13):1。硅灰石热膨胀特点是沿b轴膨胀系数(25~800℃为6.5×10-6℃-1)低,膨胀随温度改变呈线性变化。假硅灰石的热膨胀系数为11.8×10-6℃-1,明显高于硅灰石的热膨胀系数。因此在硅灰石质陶瓷的烧成过程中应避免硅灰石向假硅灰石的转变。硅灰石的物理-化学性质见表3-6-1。
表3-6-1硅灰石的主要物化性质
在高温加热条件下,硅灰石的化学性质活泼,可与高岭石等矿物发生固相反应,与陶瓷工业有关的反应包括:
河南省非金属矿产开发利用指南
河南省非金属矿产开发利用指南
由于硅灰石具有针状晶体、低热膨胀系数、低吸油率、色白、绝缘性好、高温化学性质活泼等特点,使其应用在陶瓷工业、填料工业等领域中。
二、资源概况和矿石类型
1.资源概况
硅灰石的成因类型有五种,其中有工业价值的是接触变质类型和区域变质作用类型。接触变质生成的硅灰石产于岩浆侵入体与碳酸盐岩的接触带,由SiO2和CaCO3反应而成。区域变质作用生成的硅灰石是由含钙质的岩层如石灰岩、大理岩经区域变质作用形成。
目前世界各国已查明的硅灰石储量约2亿吨,远景储量约4亿吨。在20多个硅灰石产出国中,美国、印度和墨西哥三国硅灰石矿总储量约占世界已探明总储量(不包括中国)的三分之二。
美国纽约州阿迪龙朗克山北东侧是世界硅灰石重要产地,在该州的威尔斯博罗地区有福克斯诺尔、刘易斯和狄尔赫德三个主要矿床。
墨西哥的硅灰石矿床主要产在萨卡特卡斯和恰帕斯两个州。
印度的硅灰石主要产在拉贾斯坦邦和中央邦,其中有的矿床矿石品位高达96%~97%。
我国的硅灰石矿资源丰富,远景储量为0.5亿~1.0亿吨,探明储量仅次于印度,居世界第二位。我国硅灰石产地比较集中,主要分布在吉林省,占全国总储量44.7%,江西省占17%,青海占13.4%,辽宁占10.3%,其他主要分布在湖北、安徽、浙江、江苏、云南、福建等省。我国硅灰石矿成矿条件好,矿体规模大,成分简单,较富。吉林梨树大顶山硅灰石矿床是我国目前规模最大的矿床。此外,吉林磐石长崴子硅灰石矿床,湖北大冶小箕铺硅灰石矿床规模也较大。
硅灰石矿床的一般工业要求见表3-6-2,开采技术条件见表3-6-3。
表3-6-2硅灰石矿床一般工业指标
注:①视矿石质量优、差取上、下限;②手选矿石块度要求,暂按直径≥4cm计。
表3-6-3硅灰石矿床开采技术条件
2.矿石类型
硅灰石矿石类型主要有大理岩型和夕卡岩型两大类。美国的威尔斯鲍罗、刘易斯、格尔赫德硅灰石矿,印度别尔卡巴赫硅灰石矿等是夕卡岩型。墨西哥拉布兰卡硅灰石矿,芬兰拉彭兰塔硅灰石矿等是大理岩型。我国主要硅灰石矿石类型见表3-6-4。国内外部分硅灰石的化学成分分析见表3-6-5。
表3-6-4我国主要硅灰石矿石类型
三、硅灰石的主要用途及质量标准
由于硅灰石具有许多优异的物化性质,使其被广泛应用于陶瓷工业、化学工业、冶金工业等各工业部门(见表3-6-6)。
迄今为止,硅灰石主要应用于陶瓷工业。其中又以作釉面砖为主,以及生产特种的无线电陶瓷和低介电损耗绝缘体陶瓷等。硅灰石之所以成为陶瓷的重要原料,是由下列因素决定的。
在传统生产陶瓷工艺中,是以铝硅为主要体系的原料,生成的物相以莫来石为主。需采用高温(1250~1300℃)、长周期(30h以上)的烧成工艺。在坯体中加入一定量的硅灰石,构成了以硅-铝-钙为主要成分的低共熔体系,生成的物相主要是钙长石。硅灰石同时是助熔剂,降低了坯体的老化点,整个坯体的快速烧结物均匀一致。因此,硅灰石降低了陶瓷生产的烧成温度,缩短了烧成时间。
表3-6-5国内外部分硅灰石的化学成分分析
表3-6-6硅灰石的主要用途
硅灰石的针状晶体为生坯提供水分快速排出的通道,干燥速度加快,从而易压制成型,不分层。焙烧时,硅灰石针状体的不熔残渣构成了阻止坯体体积变化的致密骨架,冷却时,烧结料结晶将它们之间的针状体牢固粘接。坯体具有多孔和网状结构。硅灰石低的热膨胀系数和线性膨胀的特点,有利于坯体抗热冲击。
美国、原苏联等国都已对硅灰石在釉面砖上的应用进行了大量的研究工作。美国年产硅灰石约6万~7万t,其中一半用于釉面砖生产。以硅灰石为主要原料的釉面砖,实现低耗能低温快烧的新工艺,可节省燃料约30%~50%,被誉为节能原料。
在冶金工业中,硅灰石主要用作生产模铸硅钢保护渣和板坯连铸保护渣。武汉钢铁公司钢铁研究所等单位研制的以硅灰石为主要原料的保护渣,可替代从日本进口的“浮光40”保护渣。以天然硅灰石为基料板坯连铸粉状和颗粒状保护渣,具有化学性质十分稳定,含Al2O3很低的特征,能起到稳定连铸操作和改善连铸坯质量的作用。
硅灰石作为电焊条药皮配料,在电焊工业中得到应用,特别适合用来制造高钛型低炭钢电焊条。硅灰石微粉和超细微粉被用于塑料、橡胶、造纸、油漆工业中作填料和涂料,不仅降低了产品成本,而且明显改善了产品的物理-化学性能,尤其是机械力学性能。预计今后作工业填料和涂料用的硅灰石微粉和超细微粉用量将以每年10%的速度增加。
目前我国仅国家建材局于1994年颁布了硅灰石产品质量标准,标准号为JC/T535-94。一些主要的硅灰石产区或企业根据用户要求制定了一些地方或企业标准。
陶瓷、油漆、涂料、冶金、电焊条等应用领域对硅灰石产品质量要求分别见表3-6-7~表3-6-10。
吉林梨树硅灰石矿业公司出口硅灰石块矿和针状硅灰石粉质量标准见表3-6-11和表3-6-12。
表3-6-7陶瓷工业用硅灰石产品的质量要求
注:建筑陶瓷用硅灰石,一般要求硅灰石矿物含量>60%。
表3-6-8油漆、涂料用硅灰石产品质量要求
表3-6-9冶金保护渣用硅灰石产品质量要求
表3-6-10电焊条工业对硅灰石产品质量要求
表3-6-11吉林梨树硅灰石矿业公司出口硅灰石块矿质量标准
表3-6-12H-G系列针状硅灰石粉
吉林四平市硅灰石企业标准(吉Q/SS124-85)适用于油漆涂料、塑料、橡胶、陶瓷等行业,见表3-6-13~表3-6-15。
表3-6-13吉林四平市硅灰石产品规格
表3-6-14吉林四平市硅灰石的技术要求
表3-6-15吉林四平市涂料级硅灰石粉的技术要求
注:以上产品指标,可根据用户特殊要求,双方协商。
湖北大冶非金属矿公司的硅灰石产品质量标准见表3-6-16。国外硅灰石一般工业要求见表3-6-17。美国出售硅灰石的粒度要求见表3-6-18。
表3-6-16湖北大冶非金属矿公司硅灰石产品质量标准
表3-6-17国外硅灰石一般工业要求
表3-6-18美国出售硅灰石的粒度要求
四、硅灰石矿石的选矿和超细粉碎
1.硅灰石矿石的选矿提纯
硅灰石属接触变质矿物,与其共生的主要矿物有方解石、透辉石、石榴子石、透闪石、符山石、石英、黄铜矿、斑铜矿等,硅灰石的选矿方法随着矿石类型不同而有所不同。手选、光电拣选、磁选、浮选、重选等方法广泛应用于硅灰石的加工工艺中。硅灰石的主要选矿方法和原则流程见表3-6-19和表3-6-20。
列举两个实例说明硅灰石矿石的选矿。
表3-6-19硅灰石的主要选矿加工方法
表3-6-20硅灰石的主要选矿工艺原则流程
例1梨树硅灰石矿的选矿工艺
该矿位于吉林省梨树县内。矿石中硅灰石含量为46.50%,方解石41.23%,透辉石3.49%,石英6.67%。在矿石中,硅灰石晶体内有透辉石和石英包体,方解石则呈不规则状分布于硅灰石颗粒及其裂隙之间。根据原矿性质,采用单一浮选流程选别硅灰石。根据硅灰石与方解石、石英的可浮性不同,采用反浮选方法对硅灰石进行选别,选矿流程见图3-6-1。
图3-6-1梨树硅灰石矿连选试验流程
方解石精矿含方解石95.71%,产率38.78%;硅灰石精矿含硅灰石87.20%,产率44.48%。
例2威尔斯鲍罗硅灰石选矿厂
选矿厂位于美国纽约州威尔斯鲍罗。矿石主要矿物组成为硅灰石、钙铁石榴子石、透辉石、少量方解石。矿石中硅灰石含量为55%~65%,钙铁石榴子石和透辉石的含量为10%~20%。根据矿石性质,采用单一强磁选工艺流程使硅灰石和钙铁榴石及透辉石分离。工艺流程见图3-6-2。
2.硅灰石的超细粉碎
图3-6-2威尔斯鲍罗硅灰石选矿流程
硅灰石作为高档无机工业填料,必须深加工成针状超细粉料。国外多采用气流磨对硅灰石精矿进行超细粉碎,产品中高长径比、高比表面的粉量增多。80年代末,吉林梨树硅灰石矿业公司从Alpine公司引进两台630AFG流化床式气流粉碎机,用于生产-10μm的硅灰石超细微粉。随后,该公司与武汉工业大学合作,实现了这种设备国产化,研制成与630AFG性能相同的LPM-680气流磨,并建成了年产200t的超细硅灰石粉生产线,生产线工艺流程见图3-6-3。给料粒度325目,产量280.6kg/h,10μm通过率97.7%。
硅灰石超细粉碎产品有800、1250、2500目等。也可以根据用户的需要加工出平均粒度为10、5、2、1μm级的产品。
五、硅灰石粉料的表面改性
图3-6-3超细硅灰石生产线工艺流程
1—颚式破碎机;2—传送带;3—颚式破碎机;4—除尘器;5—提升机;6—料仓;7—风机;8—提升机;9—料仓;10—磨机;11—旋流分级机;12一风机;13—提升机;14—料仓;15—风送系统;16—料仓;17—螺旋输送机;18—空压机;19—冷凝器;20—储气罐;21—LPM气流磨;22—收集器;23—风机
粉体表面改性(Surface modification or Surface treatment)是指用物理、化学、机械等方法对粉体物料表面进行处理,根据应用的需要有目的地改善或完全改变物料的物理技术性能或表面物理化学性质,如表面晶体结构和官能团、表面能、表面润湿性、表面吸附和反应特性等,以满足现代新工艺和新技术发展对新材料的需要。粉体的表面处理改性既是一门新技术,又是一门新学科。对于非金属矿物,表面改性能提高其使用价值和开拓应用领域,是最重要的深加工技术之一。
在塑料、橡胶、胶粘剂等高分子材料工业及复合材料领域中,无机矿物填料占有很重要的地位,不仅可以降低生产成本,而且明显改善产品的物理化学性能,如机械力学性能、阻燃性、绝缘性等。但是由于无机矿物与基质,即有机高聚物或树脂等具有不同的膨胀系数、表面张力、抗弯模数等性质,在二者接触处,明显表现出不相容性,因此接触界面是最薄弱的部位,易发生分离。由于相容性差,无机矿物填料难以在基质中均匀分散,直接或过多地填充往往容易导致产品的某些力学性能下降以及易脆化等缺点。因此,用无机矿物作填料,除了对其粒度、粒度分布、颗粒形状有要求外,还必须对矿物填料表面进行改性,提高其与基质,即有机高聚物或树脂的相容性和分散性,以增强产品的机械强度和综合性能。
用来对矿物表面进行改性的化学试剂称为表面改性剂。表面改性剂分为无机试剂和有机试剂两大类。无机试剂主要是一些无机颜料,如铁、钛、铬等的氧化物或含氧盐等。有机表面改性剂的种类较多,主要包括偶联剂类、脂肪酸(或胺)类、烯烃低聚物类以及各种树脂类等。由于矿物填料的种类不同,改性目的不同,所选用的表面改性剂亦不同。
1.矿物填料的有机表面改性剂
1)偶联剂
又称为架桥剂,是一种具有两性结构的物质。它们分子中的一部分基团可与矿物填料表面的各种化学基团反应,形成强有力的化学键合;另一部分基团则有亲有机物的性质,可与有机高分子发生化学反应或形成物理缠绕,在无机矿物与有机高分子之间形成具有特殊功能的“分子桥”,从而把两种性质差异很大的材料牢固结合起来,形成新型的复合材料。
偶联剂是目前应用最广泛的表面改性剂,它适用于各种不同的有机高分子和无机矿物填料的复合材料体系。经偶联剂进行表面处理的无机矿物填料,抑制了填充体系“相”的分离,即使增加填充量,仍可较好地均匀分散,从而改善了制品的综合性能,特别是抗张强度、冲击强度、柔韧性和挠曲强度等。按偶联剂的化学结构可分为硅烷类、钛酸酯类、锆类和有机铬络合物四大类。下面简要介绍前三类。
(1)硅烷偶联剂硅烷偶联剂是研究得最早应用最广的偶联剂,是由美国联合碳化物公司为发展玻璃纤维增强塑料而开发出来的,至今已有40年的历史。
硅烷偶联剂是一类具有特殊结构的低分子有机硅化合物。其通式为RSiX3,式中R代表与聚合物分子有亲和力或反应能力的活性官能团,如氨基、巯基、乙烯基、环氧基、氰基、甲基、丙烯酰氧基等;X代表能够水解的烷氧基(如甲氧基、乙氧基)或氯。在进行偶联时,X基首先水解形成硅醇,然后再与矿物表面上的羟基反应,形成氢键并缩合成—SiO—M共价键(M表示无机矿物填料表面)。同时,硅烷各分子的硅醇又相互缔合齐聚,形成网状结构的膜覆盖在填料表面,使无机填料有机化。现以甲氨基硅烷偶联剂为例,其偶联作用过程为:
河南省非金属矿产开发利用指南
偶联剂的另一端的R可与聚合物发生反应形成牢固的化学键合。这种化学反应取决于R基的性质和树脂的种类。以环氧硅烷为例,与环氧树脂反应
河南省非金属矿产开发利用指南
硅烷偶联剂可用于许多无机矿物填料的表面改性,其中对含硅酸成分较多的石英粉、玻璃纤维、白碳黑等的效果最好,对高岭土、水合氧化铝效果也较好,对不含游离酸的碳酸钙效果欠佳。硅烷偶联剂产品牌号和品种分类见表3-6-21。
表3-6-21硅烷偶联剂产品牌号和品种分类
续表
续表
(2)钛酸酯偶联剂钛酸酯偶联剂是美国肯里奇(Kenrich)石油化学公司70年代开发成功的一类新型偶联剂。它有独特的结构,对热塑性聚合物与干燥填料有良好的偶联效能。
钛酸酯偶联剂的分子结构分为6个功能区,每个功能区都有其特点,在偶联过程中发挥各自的作用。
钛酸酯偶联剂的通式和6个功能区:
偶联无机相·亲有机相
河南省非金属矿产开发利用指南
式中:1≤M≤4,M+N≤6;R—短碳链烷烃基;R′—长碳链烷烃基;X—C、N、P、S等元素;Y—羟基、氨基、环氧基、双键等机团。
各功能区说明如下:功能区1[(RO)M—]—与无机填、颜料偶联作用的基团;
功能区2(Ti—O……—)—酯基转移和交联功能;
功能区3(X—)—联结钛中心带有功能性的基团;
功能区4(R—)—长链的纠缠基团——适用于热塑性树脂;
功能区5(Y—)一固化反应基团——适用于热固性树脂;
功能区6(N—)—非水解基团数。
(RO)M为钛酸酯与矿物填料进行化学键合的官能团,它可与矿物表面结构水和H+作用,形成包围矿物的单分子层。Ti—O部分为钛酸酯的有机骨架,可与聚合物的羧基之间进行相互交换,起酯基和烷基转移和交联作用。X部分是和分子核心钛结合的基团,对钛酸酯的性质有重要影响,具体可分为磷酸酯、五磷酸酯、羧基酸、磺酸基等。
钛酸酯偶联剂按其化学结构可分为三种类型:单烷氧基型、螯合型和配位型。
单烷氧基型这一类品种最多,价格适中,广泛应用于塑料、橡胶、涂料、胶粘剂工业。这类偶联剂的典型是三异硬脂酰基钛酸异丙酯(TTS)。除含乙醇胺基和焦磷酸酯基的单烷氧基型外,大多数品种耐水性差,适用于不含游离水,仅含化学键合水和物理键合水的干燥矿物填料体系,如碳酸钙、水合氧化铝等。单烷氧基钛酸酯与无机填料的作用机理见图3-6-4。
图3-6-4单烷氧基钛酸酯与无机填料的作用机理
焦磷酸型钛酸酯偶联剂耐水性好,适用于中等含水的无机填料,如高岭土、滑石粉等。焦磷酸型钛酸酯处理湿填料的吸湿机理见图3-6-5。
图3-6-5焦磷酸型钛酸酯处理湿填料的吸湿机理
螯合型这类偶联剂适用于高湿无机填料和含水聚合物体系,如高岭土、滑石粉、水处理玻璃纤维、炭黑等。一般的单烷氧基型钛酸酯水解稳定性差,在高湿体系中偶联效果差。螯合型钛酸酯偶联剂具有极好的水解稳定性,适于在高湿状态下使用。根据螯合环的不同,这类偶联剂分为两种基本类型:螯合100型和螯合200型。前者螯合基为氧代乙酰氧基;后者螯合基为二氧乙撑基。它们的偶联机理见图3-6-6和图3-6-7。
图3-6-6螯合100型与填料的偶联机理
图3-6-7螯合200型与填料的偶联机理
配位体型四价钛酸酯在一些体系中存在副反应,如在环氧树脂中与羟基反应,在聚酯中的酯交换反应等。配位体型钛酸酯中的钛原子由4价键转变为6价键,降低了钛酸酯的反应活性,提高了耐水性。因此,配位体型钛酸酯偶联剂可在溶剂型涂料或水性涂料中使用。配位体型钛酸酯偶联剂与填料的偶联机理见图3-6-8。
图3-6-8配位型偶联剂与填料的作用机理
国内外钛酸酯偶联剂主要品种见表3-6-22。
表3-6-22国内外钛酸酯偶联剂主要品种对照
(3)锆铝酸盐偶联剂锆类偶联剂是美国Cavedon化学公司于80年代开发的一类新型偶联剂,其商品名称为“CavcoMod”,它是以水合氯化氧锆(ZrOCl2·8H2O)、氯醇铝(Al2OH5Cl)、丙烯醇、羧酸等为原料合成的。锆铝酸盐偶联剂分子中含有两个无机部分和一个有机功能配位体。由于分子中无机特性部分的比重大,因此具有更多的无机反应点,使偶联剂有良好的羟基稳定性和水解稳定性。根据分子中的金属含量(即无机特性部分的比重)和有机配位基的性质,将已商品化的锆铝酸盐偶联剂分为7类(见表3-6-23),分别适用于聚烯烃、聚酯、环氧树脂、尼龙、丙烯酸类树脂、聚氨酯、合成橡胶等不同的聚合物,对于矿物填料,可用于碳酸钙、二氧化硅、高岭土、三水合氧化铝、氧化钛等的偶联改性。锆铝偶联剂性能较好,价格较便宜,在很多情况下可代替硅烷偶联剂。
表3-6-23锆类偶联剂(Cavco Mod)的品种
2)高级脂肪酸及其盐类改性剂
(1)高级脂肪酸及其盐类高级脂肪酸属于阴离子表面活性剂,其分子通式为RCOOH。分子的一端为长链烷基(C16~C18),这种结构与聚合物分子结构相近似,尤其是与聚烯烃分子结构相近,因而与聚合物基料有一定的相容性。分子的另一端为羧基或其金属盐,可与矿物填料表面发生一定的化学反应和物理吸附。因此,用高级脂肪酸及其金属盐处理矿物填料时,具有类似于偶联剂的作用。
常用的高级脂肪酸及其金属盐类的表面改性剂有硬脂酸、硬脂酸钙、硬脂酸锌等。高级脂肪酸的胺类、酯类与其金属盐类近似,亦可作表面改性剂。
(2)不饱和有机酸类不饱和有机酸分子具有一个或多个不饱和双键及一个或多个羟基,碳原子数一般在10个以上。常见的不饱和有机酸有丙烯酸、马来酸、衣康酸、醋酸乙烯、醋酸丙烯等。带有不饱和双键的有机酸,对含碱金属离子的矿物填料进行表面改性,具有良好的处理效果。由于分子中存在不饱和双键,在和基体树脂复合时,在残余引发剂或热能、机械能作用下,双键打开,与基体树脂发生“接枝”、交联等一系列化学反应,使矿物填料与树脂较好地结合在一起,提高了产品的物理机械性能。
3)有机低聚物
(1)聚烯烃低聚物聚烯烃低聚物主要品种有无规聚丙烯和聚乙烯蜡。聚烯烃低聚物有较高的粘附性能,可以和无机填料较好地浸润、粘附、包裹。同时因为基本结构和聚烯烃相似,能与聚烯烃很好地相容结合。因此,聚烯烃低聚物广泛应用于聚烯烃类复合材料中无机填料的表面处理。
(2)聚乙二醇用聚乙二醇包覆处理硅灰石可显著改善聚丙烯(PP)缺口的冲击强度和低温性能。
2.表面改性剂的选择及用量
目前市场上已有几百种表面改性剂供选择,其选择过程是一个复杂的过程。对于同一种无机矿物填料,影响其填充效果的主要因素有颗粒的形状、粒径大小和粒度分布、填料表面性质等。填料的粒径越小,其补强效果越好。如用325目和2500目碳酸钙作半硬质PVC填料,后者比前者强度提高30%。纤维状、片状填料有助于提高制品的机械强度。在填料粒径、形状确定的情况下,考查填料表面改性效果的主要判据是填料与有机聚合物基体结合的牢固程度、填加量的多少,产品的各种物理-化学性能是否提高了等。这些与表面改性剂的选择和表面改性工艺过程有关。表3-6-24列出了各种表面改性剂的适用范围。
表3-6-24表面改性剂的适用范围
表面改性剂的用量一般为无机填料量的0.5%~3%。对于某些偶联剂类,可通过计算得到理论加入量。以硅烷偶联剂为例,计算公式为:
河南省非金属矿产开发利用指南
式中:W为硅烷偶联剂用量(g);W1为欲改性的矿物填料重量(g);S1为矿物填料的比表面积(m2/g),可实测获得;S2为偶联剂的最小包裹面积(m2/g),由生产厂家提供。
表3-6-25给出了KH系列硅烷偶联剂的最小包覆面积。
表3-6-25KH系列硅烷偶联剂最小包覆面积
在生产和试验中主要采用“活化指数”来表征表面处理的效果。无机矿物填料或颜料粉体相对密度较大,而且表面呈极性状态,在水中自然沉降。经表面改性处理后的无机填料粉体表面由极性变为非极性,对水呈现出较强的非浸润性,不沉降。根据上述现象,提出“活性指数”,用H表示,其含义为:
河南省非金属矿产开发利用指南
由上式可见:未经表面活化处理的无机粉体,H=0,活化处理最彻底时,H=1.0,H变化范围为0~1.0。将改性样品放入清水中搅拌10min,然后观察是否有沉淀和沉淀多少,如果在2天内无沉淀或沉淀很少,说明改性成功。改性剂的用量可根据“活化指数”来确定。最佳用量应是表面改性剂在颗粒表面上覆盖单分子层的用量。大于此量,则将形成多层物理吸附的界面薄弱层,从而导致填充物的强度下降;低于最佳用量,则填料颗粒表面改性处理不完全。
液态表面改性剂使用前应稀释,固态表面改性剂应配制成溶液。由于硅烷偶联剂与水的作用是偶联作用的基础,大部分硅烷经水解后成为水溶液。因此,常用水作稀释剂配成溶液使用。一般采用酸性溶液水解硅烷,常用的酸有盐酸、醋酸、月桂酸等。对于水解产物易缩合的硅烷,其水溶液应在使用前临时配制。
钛酸酯偶联剂用惰性溶剂,如白油、石油醚、变压器油等稀释,配成一定浓度的溶液。
锆类偶联剂的溶剂见表3-6-23。
用丙酮溶解硬脂酸制成溶液。
3.矿物填料表面改性工艺及设备
对矿物填料表面进行改性的方式有两种。一种是矿物填料预先涂敷处理改性工艺,在填料与树脂基料混合之前,先对矿物填料表面改性。另一种是所谓的整体处理工艺,将矿物填料和改性剂一起加入到树脂基料中进行混合处理。
预先涂敷处理改性工艺所用的主要设备是高速混合(捏合)机(图3-6-9)。
图3-6-9高速混合(捏合)机结构
1—回转盖;2—混合锅;3—折流板;4—搅拌叶轮;5—排料装置;6—驱动电机;7—机座
高速混合机工作时,高速旋转的叶轮使物料连续地螺旋状上、下运动,物料运动速度很快。快速运动着的颗粒之间相互碰撞、摩擦,使团块破碎,物料温度相应升高,使物料均匀分散和对改性剂均匀吸附。工作原理见图3-6-10。
高速混合机的改性效果主要与叶轮的形状和回转速度、物料的温度、物料在混合室内的充满程度(即填充率)、混合时间、改性剂的加入方式和用量等因素有关。
填充率一般为0.5~0.7,对于高位式叶轮,填充率可达0.90
温度是影响最终改性效果的重要因素之一,对于不同的矿物填料和所用的表面改性剂,加热温度高低也不同。
图3-6-10高速混合(捏合)机的工作原理
1—回转盖;2—外套;3—折流板;4—叶轮;5—驱动轴;6—排料口;7—排料气缸;8—夹套
部分国产高速混合机主要技术参数见表3-6-26。
表3-6-26部分国产高速加热混合(捏合)机主要技术参数及生产厂家
4.硅灰石填料
重碳酸钙、重晶石、滑石、硅灰石等被称为白色非金属矿物颜料、填料。其中,由于硅灰石具高长径比和色泽白的特点,使其成为白色非金属矿物填料的佼佼者。用经硅烷偶联剂、钛酸酯偶联剂表面改性的硅灰石粉料作填料,可明显改善产品的性能。如作聚碳酸脂填料,其弹性模量是未填充时的3倍,强度大约增加15%,填充到聚乙烯、聚丙烯中,产品的拉伸强度、弯曲强度等机械力学性能明显提高。表3-6-27和表3-6-28列出了硅灰石充填PVC硬板和尼龙1010的性能。
表3-6-27硅灰石充填PVC硬板性能
表3-6-28不同矿物填充尼龙1010性能对比
西北油漆厂用硅灰石粉代替部分钛白粉或滑石粉,成功地应用到涂料中。
主要参考文献
[1]《非金属矿工业手册》编辑委员会,非金属矿工业手册(上、下册),冶金工业出版社,1992。
[2]郑水林,粉体表面改性.中国建材工业出版社,1995。
[3]李英堂等,应用矿物学,科学出版社,1995。
[4]孙宝岐等,非金属矿深加工,冶金工业出版社,1995。
[5]《矿产资源综合利用手册》编辑委员会,矿产资源综合利用手册,科学出版社,2000。
[6]刘伯元,硅灰石深加工及其产品在塑料中的应用,非金属矿,1997.3期,P21~24。
[7]李晓琴等,硅灰石质瓷质坯体焙烧过程物相变化研究,非金属矿,1999.1期,P12~13。
C. 求钢琴曲
我就不作什么长篇大论了,向你推荐一些单曲和一些好听的钢琴专辑吧!
《六月船歌》《金婚进行曲》《第5号匈牙利舞曲》《走过绿意》《阿甘正传》《绿袖子》《G弦上的咏叹调》《夜曲》《裸体歌舞第二首》《月光钢琴奏鸣曲》《悲怆钢琴奏鸣曲》《宋家皇朝》《诗人与我》《寂静之声》《梦幻曲》《小娟&山谷里的居民》《美丽倾城-唯美吟唱》
《宫崎骏动画钢琴合集》
http://www.verycd.com/topics/14971/
《水晶香气:热门韩剧水晶钢琴曲》
http://www.verycd.com/topics/2765183/
《The Piano Playe》
http://www.verycd.com/topics/9238/
《云中漫步》
http://www.verycd.com/topics/76804/
此外凯文·瑞恩的作品也很好!
D. 稀土永磁的案例
17种稀土元素名称的由来及用途浅说
镧(La)
“镧”这个元素是1839年被命名的,当时有个叫“莫桑德”的瑞典人发现铈土中含有其它元素,他借用希腊语中“隐藏”一词把这种元素取名为“镧”。从此,镧便登上了历史舞台。 ??镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与“超级钙”的美称。
铈(Ce)
“铈”这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星——谷神星。 ??铈广泛应用于(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约一千多吨。(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。美国在这方面的消费量占稀土总消费量的三分之一强。(3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。(4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。
镨(Pr)
大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为“镨钕”。“镨钕”希腊语为“双生子”之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从“镨钕”中分离出了两个元素,一个取名为“钕”,另一个则命名为“镨”。这种“双生子”被分隔开了,镨元素也有了自己施展才华的广阔天地。
镨是用量较大的稀土元素,其主要用于玻璃、陶瓷和磁性材料中。(1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。(2)用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马达上。(3)用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,用量不断增大。(4)镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。
钕(Nd)
伴随着镨元素的诞生,钕元素也应运而生,钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。
钕元素凭借其在稀土领域中的独特地位,多年来成为市场关注的热点。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。钕还应用于有色金属材料。在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。
钷(Pm)
1947年,马林斯基(J.A.Marinsky)、格伦丹宁(L.E.Glendenin)和科里尔(C.E.Coryell)从原子能反应堆用过的铀燃料中成功地分离出61号元素,用希腊神话中的神名普罗米修斯(Prometheus)命名为钷(Promethium)。
钷为核反应堆生产的人造放射性元素。钷的主要用途有(1)可作热源。为真空探测和人造卫星提供辅助能量。(2)Pm147放出能量低的β射线,用于制造钷电池。作为导弹制导仪器及钟表的电源。此种电池体积小,能连续使用数年之久。此外,钷还用于便携式X-射线仪、制备荧光粉、度量厚度以及航标灯中。
钐(Sm)
1879年,波依斯包德莱从铌钇矿得到的“镨钕”中发现了新的稀土元素,并根据这种矿石的名称命名为钐。
钐呈浅黄色,是做钐钴系永磁体的原料,钐钴磁体是最早得到工业应用的稀土磁体。这种永磁体有SmCo5系和Sm2Co17系两类。70年代前期发明了SmCo5系,后期发明了Sm2Co17系。现在是以后者的需求为主。钐钴磁体所用的氧化钐的纯度不需太高,从成本方面考虑,主要使用95%左右的产品。此外,氧化钐还用于陶瓷电容器和催化剂方面。另外,钐还具有核性质,可用作原子能反应堆的结构材料,屏敝材料和控制材料,使核裂变产生巨大的能量得以安全利用。
铕(Eu)
1901年,德马凯(Eugene-Antole Demarcay)从“钐”中发现了新元素,取名为铕(Europium)。这大概是根据欧洲(Europe)一词命名的。氧化铕大部分用于荧光粉。Eu3+用于红色荧光粉的激活剂,Eu2+用于蓝色荧光粉。现在Y2O2S:Eu3+是发光效率、涂敷稳定性、回收成本等最好的荧光粉。再加上对提高发光效率和对比度等技术的改进,故正在被广泛应用。近年氧化铕还用于新型X射线医疗诊断系统的受激发射荧光粉。氧化铕还可用于制造有色镜片和光学滤光片,用于磁泡贮存器件,在原子反应堆的控制材料、屏敝材料和结构材料中也能一展身手。
钆(Gd)
1880年,瑞士的马里格纳克将“钐”分离成两个元素,其中一个由索里特证实是钐元素,另一个元素得到波依斯包德莱的研究确认,1886年,马里格纳克为了纪念钇元素的发现者 研究稀土的先驱荷兰化学家加多林(Gado Linium),将这个新元素命名为钆。
钆在现代技革新中将起重要作用。它的主要用途有:(1)其水溶性顺磁络合物在医疗上可提高人体的核磁共振(NMR)成像信号。(2)其硫氧化物可用作特殊亮度的示波管和x射线荧光屏的基质栅网。(3)在钆镓石榴石中的钆对于磁泡记忆存储器是理想的单基片。(4)在无Camot循环限制时,可用作固态磁致冷介质。(5)用作控制核电站的连锁反应级别的抑制剂,以保证核反应的安全。(6)用作钐钴磁体的添加剂,以保证性能不随温度而变化。另外,氧化钆与镧一起使用,有助于玻璃化区域的变化和提高玻璃的热稳定性。氧化钆还可用于制造电容器、x射线增感屏。
在世界上目前正在努力开发钆及其合金在磁致冷方面的应用,现已取得突破性进展,室温下采用超导磁体、金属钆或其合金为致冷介质的磁冰箱已经问世。
铽(Tb)
1843年瑞典的莫桑德(Karl G.Mosander)通过对钇土的研究,发现铽元素(Terbium)。铽的应用大多涉及高技术领域,是技术密集、知识密集型的尖端项目,又是具有显著经济效益的项目,有着诱人的发展前景。主要应用领域有:(1)荧光粉用于三基色荧光粉中的绿粉的激活剂,如铽激活的磷酸盐基质、铽激活的硅酸盐基质、铽激活的铈镁铝酸盐基质,在激发状态下均发出绿色光。(2)磁光贮存材料,近年来铽系磁光材料已达到大量生产的规模,用Tb-Fe非晶态薄膜研制的磁光光盘,作计算机存储元件,存储能力提高10~15倍。(3)磁光玻璃,含铽的法拉第旋光玻璃是制造在激光技术中广泛应用的旋转器、隔离器和环形器的关键材料。特别是铽镝铁磁致伸缩合金(TerFenol)的开发研制,更是开辟了铽的新用途,Terfenol是70年代才发现的新型材料,该合金中有一半成份为铽和镝,有时加入钬,其余为铁,该合金由美国依阿华州阿姆斯实验室首先研制,当Terfenol置于一个磁场中时,其尺寸的变化比一般磁性材料变化大,这种变化可以使一些精密机械运动得以实现。铽镝铁开始主要用于声纳,目前已广泛应用于多种领域,从燃料喷射系统、液体阀门控制、微定位到机械致动器、太空望远镜的调节机构和飞机机翼调节器等领域。
镝(Dy)
1886年,法国人波依斯包德莱成功地将钬分离成两个元素,一个仍称为钬,而另一个根据从钬中“难以得到”的意思取名为镝(dysprosium)。镝目前在许多高技术领域起着越来越重要的作用,镝的最主要用途是(1)作为钕铁硼系永磁体的添加剂使用,在这种磁体中添加2~3%左右的镝,可提高其矫顽力,过去镝的需求量不大,但随着钕铁硼磁体需求的增加,它成为必要的添加元素,品位必须在95~99.9%左右,需求也在迅速增加。(2)镝用作荧光粉激活剂,三价镝是一种有前途的单发光中心三基色发光材料的激活离子,它主要由两个发射带组成,一为黄光发射,另一为蓝光发射,掺镝的发光材料可作为三基色荧光粉。(3)镝是制备大磁致伸缩合金铽镝铁(Terfenol)合金的必要的金属原料,能使一些机械运动的精密活动得以实现。(4)镝金属可用做磁光存贮材料,具有较高的记录速度和读数敏感度。(5)用于镝灯的制备,在镝灯中采用的工作物质是碘化镝,这种灯具有亮度大、颜色好、色温高、体积小、电弧稳定等优点,已用于电影、印刷等照明光源。(6)由于镝元素具有中子俘获截面积大的特性,在原子能工业中用来测定中子能谱或做中子吸收剂。(7)Dy3Al5O12还可用作磁致冷用磁性工作物质。随着科学技术的发展,镝的应用领域将会不断的拓展和延伸。
钬(Ho)
十九世纪后半叶,由于光谱分析法的发现和元素周期表的发表,再加上稀土元素电化学分离工艺的进展,更加促进了新的稀土元素的发现。1879年,瑞典人克利夫发现了钬元素并以瑞典首都斯德哥尔摩地名命名为钬(holmium)。
钬的应用领域目前还有待于进一步开发,用量不是很大,最近,包钢稀土研究院采用高温高真空蒸馏提纯技术,研制出非稀土杂质含量很低的高纯金属钬Ho/∑RE>99.9%。目前钬的主要用途有:用作金属卤素灯添加剂,金属卤素灯是一种气体放电灯,它是在高压汞灯基础上发展起来的,其特点是在灯泡里充有各种不同的稀土卤化物。目前主要使用的是稀土碘化物,在气体放电时发出不同的谱线光色。在钬灯中采用的工作物质是碘化钬,在电弧区可以获得较高的金属原子浓度,从而大大提高了辐射效能。(2)钬可以用作钇铁或钇铝石榴石的添加剂;(3)掺钬的钇铝石榴石(Ho:YAG)可发射2μm激光,人体组织对2μm激光吸收率高,几乎比Hd:YAG高3个数量级。所以用Ho:YAG激光器进行医疗手术时,不但可以提高手术效率和精度,而且可使热损伤区域减至更小。钬晶体产生的自由光束可消除脂肪而不会产生过大的热量,从而减少对健康组织产生的热损伤,据报道美国用钬激光治疗青光眼,可以减少患者手术的痛苦。我国2μm激光晶体的水平已达到国际水平,应大力开发生产这种激光晶体。(4)在磁致伸缩合金Terfenol-D中,也可以加入少量的钬,从而降低合金饱和磁化所需的外场。(5)另外用掺钬的光纤可以制作光纤激光器、光纤放大器、光纤传感器等等光通讯器件在光纤通信迅猛的今天将发挥更重要的作用。
铒(Er)
1843年,瑞典的莫桑德发现了铒元素(Erbium)。铒的光学性质非常突出,一直是人们关注的问题:(1)Er3+在1550nm处的光发射具有特殊意义,因为该波长正好位于光纤通讯的光学纤维的最低损失,铒离子(Er3+)受到波长980nm、1480nm的光激发后,从基态4I15/2跃迁至高能态4I13/2,当处于高能态的Er3+再跃迁回至基态时发射出1550nm波长的光,石英光纤可传送各种不同波长的光,但不同的光光衰率不同,1550nm频带的光在石英光纤中传输时光衰减率最低(0.15分贝/公里),几乎为下限极限衰减率。因此,光纤通信在1550nm处作信号光时,光损失最小。这样,如果把适当浓度的铒掺入合适的基质中,可依据激光原理作用,放大器能够补偿通讯系统中的损耗,因此在需要放大波长1550nm光信号的电讯网络中,掺铒光纤放大器是必不可少的光学器件,目前掺铒的二氧化硅纤维放大器已实现商业化。据报道,为避免无用的吸收,光纤中铒的掺杂量几十至几百ppm。光纤通信的迅猛发展,将开辟铒的应用新领域。(2)另外掺铒的激光晶体及其输出的1730nm激光和1550nm激光对人的眼睛安全,大气传输性能较好,对战场的硝烟穿透能力较强,保密性好,不易被敌人探测,照射军事目标的对比度较大,已制成军事上用的对人眼安全的便携式激光测距仪。(3)Er3+加入到玻璃中可制成稀土玻璃激光材料,是目前输出脉冲能量最大,输出功率最高的固体激光材料。(4)Er3+还可做稀土上转换激光材料的激活离子。(5)另外铒也可应用于眼镜片玻璃、结晶玻璃的脱色和着色等。
铥(Tm)
铥元素是1879年瑞典的克利夫发现的,并以斯堪迪那维亚(Scandinavia)的旧名Thule命名为铥(Thulium)。
铥的主要用途有以下几个方面:(1)铥用作医用轻便X光机射线源,铥在核反应堆内辐照后产生一种能发射X射线的同位素,可用来制造便携式血液辐照仪上,这种辐射仪能使铥-169受到高中子束的作用转变为铥-170,放射出X射线照射血液并使白血细胞下降,而正是这些白细胞引起器官移植排异反应的,从而减少器官的早期排异反应。(2)铥元素还可以应用于临床诊断和治疗肿瘤,因为它对肿瘤组织具有较高亲合性,重稀土比轻稀土亲合性更大,尤其以铥元素的亲合力最大。(3)铥在X射线增感屏用荧光粉中做激活剂LaOBr:Br(蓝色),达到增强光学灵敏度,因而降低了X射线对人的照射和危害,与以前钨酸钙增感屏相比可降低X射线剂量50%,这在医学应用具有重要现实的意义。(4)铥还可在新型照明光源 金属卤素灯做添加剂。(5)Tm3+加入到玻璃中可制成稀土玻璃激光材料,这是目前输出脉冲量最大,输出功率最高的固体激光材料。Tm3+也可做稀土上转换激光材料的激活离子。
镱(Yb)
1878年,查尔斯(Jean Charles)和马利格纳克(在“铒”中发现了新的稀土元素,这个元素由伊特必(Ytterby)命名为镱(Ytterbium)。
镱的主要用途有(1)作热屏蔽涂层材料。镱能明显地改善电沉积锌层的耐蚀性,而且含镱镀层比不含镱镀层晶粒细小,均匀致密。(2)作磁致伸缩材料。这种材料具有超磁致伸缩性即在磁场中膨胀的特性。该合金主要由镱/铁氧体合金及镝/铁氧体合金构成,并加入一定比例的锰,以便产生超磁致伸缩性。(3)用于测定压力的镱元件,试验证明,镱元件在标定的压力范围内灵敏度高,同时为镱在压力测定应用方面开辟了一个新途径。(4)磨牙空洞的树脂基填料,以替换过去普遍使用银汞合金。(5)日本学者成功地完成了掺镱钆镓石榴石埋置线路波导激光器的制备工作,这一工作的完成对激光技术的进一步发展很有意义。另外,镱还用于荧光粉激活剂、无线电陶瓷、电子计算机记忆元件(磁泡)添加剂、和玻璃纤维助熔剂以及光学玻璃添加剂等。
镥(Lu)
1907年,韦尔斯巴赫和尤贝恩(G.Urn)各自进行研究,用不同的分离方法从“镱”中又发现了一个新元素,韦尔斯巴赫把这个元素取名为Cp(Cassiopeium),尤贝恩根据巴黎的旧名lutece将其命名为Lu(Lutetium)。后来发现Cp和Lu是同一元素,便统一称为镥。
镥的主要用途有(1)制造某些特殊合金。例如镥铝合金可用于中子活化分析。(2)稳定的镥核素在石油裂化、烷基化、氢化和聚合反应中起催化作用。(3)钇铁或钇铝石榴石的添加元素,改善某些性能。(4)磁泡贮存器的原料。(5)一种复合功能晶体掺镥四硼酸铝钇钕,属于盐溶液冷却生长晶体的技术领域,实验证明,掺镥NYAB晶体在光学均匀性和激光性能方面均优于NYAB晶体。(6)经国外有关部门研究发现,镥在电致变色显示和低维分子半导体中具有潜在的用途。此外,镥还用于能源电池技术以及荧光粉的激活剂等。
钇(Y)
1788年,一位以研究化学和矿物学、收集矿石的业余爱好者瑞典军官卡尔·阿雷尼乌斯(Karl Arrhenius)在斯德哥尔摩湾外的伊特必村(Ytterby),发现了外观象沥青和煤一样的黑色矿物,按当地的地名命名为伊特必矿(Ytterbite)。1794年芬兰化学家约翰·加多林分析了这种伊特必矿样品。发现其中除铍、硅、铁的氧化物外,还含有约38%的未知元素的氧化物枣“新土”。1797年,瑞典化学家埃克贝格(Anders Gustaf Ekeberg)确认了这种“新土”,命名为钇土(Yttria,钇的氧化物之意)。
钇是一种用途广泛的金属,主要用途有:(1)钢铁及有色合金的添加剂。FeCr合金通常含0.5-4%钇,钇能够增强这些不锈钢的抗氧化性和延展性;MB26合金中添加适量的富钇混合稀土后,合金的综合性能得到明显的改善,可以替代部分中强铝合金用于飞机的受力构件上;在Al-Zr合金中加入少量富钇稀土,可提高合金导电率;该合金已为国内大多数电线厂采用;在铜合金中加入钇,提高了导电性和机械强度。(2)含钇6%和铝2%的氮化硅陶瓷材料,可用来研制发动机部件。(3)用功率400瓦的钕钇铝石榴石激光束来对大型构件进行钻孔、切削和焊接等机械加工。(4)由Y-Al石榴石单晶片构成的电子显微镜荧光屏,荧光亮度高,对散射光的吸收低,抗高温和抗机械磨损性能好。(5)含钇达90%的高钇结构合金,可以应用于航空和其它要求低密度和高熔点的场合。(6)目前倍受人们关注的掺钇SrZrO3高温质子传导材料,对燃料电池、电解池和要求氢溶解度高的气敏元件的生产具有重要的意义。此外,钇还用于耐高温喷涂材料、原子能反应堆燃料的稀释剂、永磁材料添加剂以及电子工业中作吸气剂等。
钪(Sc)
1879年,瑞典的化学教授尼尔森(L.F.Nilson, 1840~1899)和克莱夫(P.T.Cleve, 1840~1905)差不多同时在稀有的矿物硅铍钇矿和黑稀金矿中找到了一种新元素。他们给这一元素定名为“Scandium”(钪),钪就是门捷列夫当初所预言的“类硼”元素。他们的发现再次证明了元素周期律的正确性和门捷列夫的远见卓识。
钪比起钇和镧系元素来,由于离子半径特别小,氢氧化物的碱性也特别弱,因此,钪和稀土元素混在一起时,用氨(或极稀的碱)处理,钪将首先析出,故应用“分级沉淀”法可比较容易地把它从稀土元素中分离出来。另一种方法是利用硝酸盐的分极分解进行分离,由于硝酸钪最容易分解,从而达到分离的目的。
用电解的方法可制得金属钪,在炼钪时将ScCl3、KCl、LiCl共熔,以熔融的锌为阴极电解之,使钪在锌极上析出,然后将锌蒸去可得金属钪。另外,在加工矿石生产铀、钍和镧系元素时易回收钪。钨、锡矿中综合回收伴生的钪也是钪的重要来源之一。
钪在化合物中主要呈3价态,在空气中容易氧化成Sc2O3而失去金属光泽变成暗灰色。
钪能与热水作用放出氢,也易溶于酸,是一种强还原剂。
钪的氧化物及氢氧化物只显碱性,但其盐灰几乎不能水解。钪的氯化物为白色结晶,易溶于水并能在空气中潮解。
在冶金工业中,钪常用于制造合金(合金的添加剂),以改善合金的强度、硬度和耐热和性能。如,在铁水中加入少量的钪,可显著改善铸铁的性能,少量的钪加入铝中,可改善其强度和耐热性。
在电子工业中,钪可用作各种半导体器件,如钪的亚硫酸盐在半导体中的应用已引起了国内外的注意,含钪的铁氧体在计算机磁芯中也颇有前途。
在化学工业上,用钪化合物作酒精脱氢及脱水剂,生产乙烯和用废盐酸生产氯时的高效催化剂。
在玻璃工业中,可以制造含钪的特种玻璃。
在电光源工业中,含钪和钠制成的钪钠灯,具有效率高和光色正的优点。
自然界中钪均以45Sc形式存在,另外,钪还有9种放射性同位素,即40~44Sc和46~49Sc。其中,46Sc作为示踪剂,已在化工、冶金及海洋学等方面使用。在医学上,国外还有人研究用46Sc来医治癌症。钪的性质及用途。
稀土资源很稀缺,美日已经不开采自己国内的稀土资源,只从我国进口,我国稀土出口可以说把黄金卖成白菜价了,近几年国家才渐渐重视起来,控制了稀土的出口量。
E. 亚美利加里的进口地板怎么样
不得不承认亚美利加的进口地板真心的不错呢,让你看见就会有一种一分钱一分货的感觉,棒棒哒
F. 下图显示的是一种材料的发光特性与发光中心(Eu3+)浓度的关系,
稀土金属已广泛应用于电子、石油化工(催化剂)、冶金、机械、能源、轻工、环境保护、农业等领域。应用:稀土可生产荧光材料(红色,绿色)、稀土金属氢化物电池材料、电光源材料、永磁材料(钕铁硼)、储氢材料、催化材料、精密陶瓷材料、激光材料、超导材料、磁致伸缩材料、磁致冷材料、磁光存储材料、光导纤维材料等航空航天,军事
%9%9%9%9%9%9%9补充:
%9%9%9%9%9%9%9镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。 镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。镧也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。铈(Ce) "铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。铈的广泛应用:(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨.(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。(3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。(4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。"镨钕"希腊语为"双生子"之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。镨的广泛应用:(1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。(2)用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马达上。(3)用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,用量不断增大。(4)镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。钕(Nd) 伴随着镨元素的诞生,钕元素也应运而生,钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。 钕元素凭借其在稀土领域中的独特地位,多年来成为市场关注的热点。金属钕的最大用户是钕铁硼永磁材料。钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。钕铁硼磁体磁能积高,被称作当代"永磁之王",以其优异的性能广泛用于电子、机械等行业。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。钕还应用于有色金属材料。在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。 钷(Pm) 1947年,马林斯基(J.A.Marinsky)、格伦丹宁(L.E.Glendenin)和科里尔(C.E.Coryell)从原子能反应堆用过的铀燃料中成功地分离出61号元素,用希腊神话中的神名普罗米修斯(Prometheus)命名为钷(Promethium)。钷为核反应堆生产的人造放射性元素。 钷的主要用途有:(1)可作热源。为真空探测和人造卫星提供辅助能量。(2)Pm147放出能量低的β射线,用于制造钷电池。作为导弹制导仪器及钟表的电源。此种电池体积小,能连续使用数年之久。此外,钷还用于便携式X-射线仪、制备荧光粉、度量厚度以及航标灯中。钐(Sm) 1879年,波依斯包德莱从铌钇矿得到的"镨钕"中发现了新的稀土元素,并根据这种矿石的名称命名为钐。 钐呈浅黄色,是做钐钴系永磁体的原料,钐钴磁体是最早得到工业应用的稀土磁体。这种永磁体有SmCo5系和Sm2Co17系两类。70年代前期发明了SmCo5系,后期发明了Sm2Co17系。现在是以后者的需求为主。钐钴磁体所用的氧化钐的纯度不需太高,从成本方面考虑,主要使用95%左右的产品。此外,氧化钐还用于陶瓷电容器和催化剂方面。另外,钐还具有核性质,可用作原子能反应堆的结构材料,屏敝材料和控制材料,使核裂变产生巨大的能量得以安全利用。 铕(Eu) 1901年,德马凯(Eugene-Antole Demarcay)从"钐"中发现了新元素,取名为铕(Europium)。这大概是根据欧洲(Europe)一词命名的。氧化铕大部分用于荧光粉。Eu3+用于红色荧光粉的激活剂,Eu2+用于蓝色荧光粉。现在Y2O2S:Eu3+是发光效率、涂敷稳定性、回收成本等最好的荧光粉。再加上对提高发光效率和对比度等技术的改进,故正在被广泛应用。近年氧化铕还用于新型X射线医疗诊断系统的受激发射荧光粉。氧化铕还可用于制造有色镜片和光学滤光片,用于磁泡贮存器件,在原子反应堆的控制材料、屏敝材料和结构材料中也能一展身手。钆(Gd) 1880年,瑞士的马里格纳克(G.de Marignac)将"钐"分离成两个元素,其中一个由索里特证实是钐元素,另一个元素得到波依斯包德莱的研究确认,1886年,马里格纳克为了纪念钇元素的发现者 研究稀土的先驱荷兰化学家加多林(Gado Linium),将这个新元素命名为钆。 钆在现代技革新中将起重要作用。它的主要用途有:(1)其水溶性顺磁络合物在医疗上可提高人体的核磁共振(NMR)成像信号。(2)其硫氧化物可用作特殊亮度的示波管和x射线荧光屏的基质栅网。(3)在钆镓石榴石中的钆对于磁泡记忆存储器是理想的单基片。(4)在无Camot循环限制时,可用作固态磁致冷介质。(5)用作控制核电站的连锁反应级别的抑制剂,以保证核反应的安全。(6)用作钐钴磁体的添加剂,以保证性能不随温度而变化。另外,氧化钆与镧一起使用,有助于玻璃化区域的变化和提高玻璃的热稳定性。氧化钆还可用于制造电容器、x射线增感屏。 在世界上目前正在努力开发钆及其合金在磁致冷方面的应用,现已取得突破性进展,室温下采用超导磁体、金属钆或其合金为致冷介质的磁冰箱已经问世。 铽(Tb) 1843年瑞典的莫桑德(Karl G.Mosander)通过对钇土的研究,发现铽元素(Terbium)。铽的应用大多涉及高技术领域,是技术密集、知识密集型的尖端项目,又是具有显著经济效益的项目,有着诱人的发展前景。主要应用领域有:(1)荧光粉用于三基色荧光粉中的绿粉的激活剂,如铽激活的磷酸盐基质、铽激活的硅酸盐基质、铽激活的铈镁铝酸盐基质,在激发状态下均发出绿色光。(2)磁光贮存材料,近年来铽系磁光材料已达到大量生产的规模,用Tb-Fe非晶态薄膜研制的磁光光盘,作计算机存储元件,存储能力提高10~15倍。(3)磁光玻璃,含铽的法拉第旋光玻璃是制造在激光技术中广泛应用的旋转器、隔离器和环形器的关键材料。特别是铽镝铁磁致伸缩合金(TerFenol)的开发研制,更是开辟了铽的新用途,Terfenol是70年代才发现的新型材料,该合金中有一半成份为铽和镝,有时加入钬,其余为铁,该合金由美国依阿华州阿姆斯实验室首先研制,当Terfenol置于一个磁场中时,其尺寸的变化比一般磁性材料变化大这种变化可以使一些精密机械运动得以实现。铽镝铁开始主要用于声纳,目前已广 泛应用于多种领域,从燃料喷射系统、液体阀门控制、微定位到机械致动器、机构和飞机太空望远镜的调节 机翼调节器等领域。 镝(Dy) 1886年,法国人波依斯包德莱成功地将钬分离成两个元素,一个仍称为钬,而另一个根据从钬中"难以得到"的意思取名为镝(dysprosium)。镝目前在许多高技术领域起着越来越重要的作用.镝的最主要用途是:(1)作为钕铁硼系永磁体的添加剂使用,在这种磁体中添加2~3%左右的镝,可提高其矫顽力,过去镝的需求量不大,但随着钕铁硼磁体需求的增加,它成为必要的添加元素,品位必须在95~99.9%左右,需求也在迅速增加。(2)镝用作荧光粉激活剂,三价镝是一种有前途的单发光中心三基色发光材料的激活离子,它主要由两个发射带组成,一为黄光发射,另一为蓝光发射,掺镝的发光材料可作为三基色荧光粉。(3)镝是制备大磁致伸缩合金铽镝铁(Terfenol)合金的必要的金属原料,能使一些机械运动的精密活动得以实现。(4)镝金属可用做磁光存贮材料,具有较高的记录速度和读数敏感度。(5)用于镝灯的制备,在镝灯中采用的工作物质是碘化镝,这种灯具有亮度大、颜色好、色温高、体积小、电弧稳定等优点,已用于电影、印刷等照明光源。 (6)由于镝元素具有中子俘获截面积大的特性,在原子能工业中用来测定中子能谱或做中子吸收剂。(7)Dy3Al5O12还可用作磁致冷用磁性工作物质。随着科学技术的发展,镝的应用领域将会不断的拓展和延伸。钬(Ho) 十九世纪后半叶,由于光谱分析法的发现和元素周期表的发表,再加上稀土元素电化学分离工艺的进展,更加促进了新的稀土元素的发现。1879年,瑞典人克利夫发现了钬元素并以瑞典首都斯德哥尔摩地名命名为钬(holmium)。 钬的应用领域目前还有待于进一步开发,用量不是很大,最近,包钢稀土研究院采用高温高真空蒸馏提纯技术,研制出非稀土杂质含量很低的高纯金属钬Ho/∑RE>99.9%。 目前钬的主要用途有:(1)用作金属卤素灯添加剂,金属卤素灯是一种气体放电灯,它是在高压汞灯基础上发展起来的,其特点是在灯泡里充有各种不同的稀土卤化物。目前主要使用的是稀土碘化物,在气体放电时发出不同的谱线光色。在钬灯中采用的工作物质是碘化钬,在电弧区可以获得较高的金属原子浓度,从而大大提高了辐射效能。(2)钬可以用作钇铁或钇铝石榴石的添加剂;(3)掺钬的钇铝石榴石(Ho:YAG)可发射2μm激光,人体组织对2μm激光吸收率高,几乎比Hd:YAG高3个数量级。所以用Ho:YAG激光器进行医疗手术时,不但可以提高手术效率和精度,而且可使热损伤区域减至更小。钬晶体产生的自由光束可消除脂肪而不会产生过大的热量,从而减少对健康组织产生的热损伤,据报道美国用钬激光治疗青光眼,可以减少患者手术的痛苦。我国2μm激光晶体的水平已达到国际水平,应大力开发生产这种激光晶体。(4)在磁致伸缩合金Terfenol-D中,也可以加入少量的钬,从而降低合金饱和磁化所需的外场。(5)另外用掺钬的光纤可以制作光纤激光器、光纤放大器、光纤传感器等等光通讯器件在光纤通信迅猛的今天将发挥更重要的作用。 铒(Er) 1843年,瑞典的莫桑德发现了铒元素(Erbium)。铒的光学性质非常突出,一直是人们关注的问题:(1)Er3+在1550nm处的光发射具有特殊意义,因为该波长正好位于光纤通讯的光学纤维的最低损失,铒离子(Er3+)受到波长980nm、1480nm的光激发后,从基态4I15/2跃迁至高能态4I13/2,当处于高能态的Er3+再跃迁回至基态时发射出1550nm波长的光,石英光纤可传送各种不同波长的光,但不同的光光衰率不同,1550nm频带的光在石英光纤中传输时光衰减率最低(0.15分贝/公里),几乎为下限极限衰减率。因此,光纤通信在1550nm处作信号光时,光损失最小。这样,如果把适当浓度的铒掺入合适的基质中,可依据激光原理作用,放大器能够补偿通讯系统中的损耗,因此在需要放大波长1550nm光信号的电讯网络中,掺铒光纤放大器是必不可少的光学器件,目前掺铒的二氧化硅纤维放大器已实现商业化。据报道,为避免无用的吸收,光纤中铒的掺杂量几十至几百ppm。光纤通信的迅猛发展,将开辟铒的应用新领域。 (2)另外掺铒的激光晶体及其输出的1730nm激光和1550nm激光对人的眼睛安全,大 气传输性能较好,对战场的硝烟穿透能力较强,保密性好,不易被敌人探测,照射军事目标的对比度较大,已制成军事上用的对人眼安全的便携式激光测距仪。 (3)Er3+加入到玻璃中可制成稀土玻璃激光材料,是目前输出脉冲能量最大,输出功率最高的固体激光材料。(4)Er3+还可做稀土上转换激光材料的激活离子。(5)另外铒也可应用于眼镜片玻璃、结晶玻璃的脱色和着色等。 铥(Tm) 铥元素是1879年瑞典的克利夫发现的,并以斯堪迪那维亚(Scandinavia)的旧名Thule命名为铥(Thulium)。 铥的主要用途有以下几个方面:(1)铥用作医用轻便X光机射线源,铥在核反应堆内辐照后产生一种能发射X射线的同位素,可用来制造便携式血液辐照仪上,这种辐射仪能使铥-169受到高中子束的作用转变为铥-170,放射出X射线照射血液并使白血细胞下降,而正是这些白细胞引起器官移植排异反应的,从而减少器官的早期排异反应。(2)铥元素还可以应用于临床诊断和治疗肿瘤,因为它对肿瘤组织具有较高亲合性,重稀土比轻稀土亲合性更大,尤其以铥元素的亲合力最大。(3)铥在X射线增感屏用荧光粉中做激活剂LaOBr:Br(蓝色),达到增强光学灵敏度,因而降低了X射线对人的照射和危害,与以前钨酸钙增感屏相比可降低X射线剂量50%,这在医学应用具有重要现实的意义。(4)铥还可在新型照明光源 金属卤素灯做添加剂。(5)Tm3+加入到玻璃中可制成稀土玻璃激光材料,这是目前输出脉冲量最大,输出功率最高的固体激光材料。Tm3+也可做稀土上转换激光材料的激活离子。镱(Yb) 1878年,查尔斯(Jean Charles)和马利格纳克(G.de Marignac)在"铒"中发现了新的稀土元素,这个元素由伊特必(Ytterby)命名为镱(Ytterbium)。 镱的主要用途有:(1)作热屏蔽涂层材料。镱能明显地改善电沉积锌层的耐蚀性,而且含镱镀层比不含镱镀层晶粒细小,均匀致密。(2)作磁致伸缩材料。这种材料具有超磁致伸缩性即在磁场中膨胀的特性。该合金主要由镱/铁氧体合金及镝/铁氧体合金构成,并加入一定比例的锰,以便产生超磁致伸缩性。(3)用于测定压力的镱元件,试验证明,镱元件在标定的压力范围内灵敏度高,同时为镱在压力测定应用方面开辟了一个新途径。(4)磨牙空洞的树脂基填料,以替换过去普遍使用银汞合金。(5)日本学者成功地完成了掺镱钆镓石榴石埋置线路波导激光器的制备工作,这一工作的完成对激光技术的进一步发展很有意义。另外,镱还用于荧光粉激活剂、无线电陶瓷、电子计算机记忆元件(磁泡)添加剂、和玻璃纤维助熔剂以及光学玻璃添加剂等。 镥(Lu) 1907年,韦尔斯巴赫和尤贝恩(G.Urn)各自进行研究,用不同的分离方法从"镱"中又发现了一个新元素,韦尔斯巴赫把这个元素取名为Cp(Cassiopeium),尤贝恩根据巴黎的旧名lutece将其命名为Lu(Lutetium)。后来发现Cp和Lu是同一元素,便统一称为镥。 镥的主要用途有:(1)制造某些特殊合金。例如镥铝合金可用于中子活化分析。(2)稳定的镥核素在石油裂化、烷基化、氢化和聚合反应中起催化作用。(3)钇铁或钇铝石榴石的添加元素,改善某些性能。(4)磁泡贮存器的原料。(5)一种复合功能晶体掺镥四硼酸铝钇钕,属于盐溶液冷却生长晶体的技术领域,实验证明,掺镥NYAB晶体在光学均匀性和激光性能方面均优于NYAB晶体。(6)经国外有关部门研究发现,镥在电致变色显示和低维分子半导体中具有潜在的用途。此外,镥还用于能源电池技术以及荧光粉的激活剂等。钇(Y) 1788年,一位以研究化学和矿物学、收集矿石的业余爱好者瑞典军官卡尔·阿雷尼乌斯(Karl Arrhenius)在斯德哥尔摩湾外的伊特必村(Ytterby),发现了外观象沥青和煤一样的黑色矿物,按当地的地名命名为伊特必矿(Ytterbite)。1794年芬兰化学家约翰·加多林分析了这种伊特必矿样品。发现其中除铍、硅、铁的氧化物外,还含有38%的未知元素的氧化物枣"新土"。1797年,瑞典化学家埃克贝格(Anders Gustaf Ekeberg)确认了这种"新土",命名为钇土(Yttria,钇的氧化物之意)。 钇是一种用途广泛的金属,主要用途有:(1)钢铁及有色合金的添加剂。FeCr合金通常含0.5-4%钇,钇能够增强这些不锈钢的抗氧化性和延展性;MB26合金中添加适量的富钇混合稀土后,合金的综合性能得到明显的改善,可以替代部分中强铝合金用于飞机的受力构件上;在Al-Zr合金中加入少量富钇稀土,可提高合金导电率;该合金已为国内大多数电线厂采用;在铜合金中加入钇,提高了导电性和机械强度。(2)含钇6%和铝2%的氮化硅陶瓷材料,可用来研制发动机部件。(3)用功率400瓦的钕钇铝石榴石激光束来对大型构件进行钻孔、切削和焊接等机械加工。(4)由Y-Al石榴石单晶片构成的电子显微镜荧光屏,荧光亮度高,对散射光的吸收低,抗高温和抗机械磨损性能好。(5)含钇达90%的高钇结构合金,可以应用于航空和其它要求低密度和高熔点的场合。(6)目前倍受人们关注的掺钇SrZrO3高温质子传导材料,对燃料电池、电解池和要求氢溶解度高的气敏元件的生产具有重要的意义。此外,钇还用于耐高温喷涂材料、原子能反应堆燃料的稀释剂、永磁材料添加剂以及电子工业中作吸气剂等。钪(Sc) 1879年,瑞典的化学教授尼尔森(L.F.Nilson, 1840~1899)和克莱夫(P.T.Cleve, 1840~1905)差不多同时在稀有的矿物硅铍钇矿和黑稀金矿中找到了一种新元素。他们给这一元素定名为"Scandium"(钪),钪就是门捷列夫当初所预言的"类硼"元素。他们的发现再次证明了元素周期律的正确性和门捷列夫的远见卓识。 钪比起钇和镧系元素来,由于离子半径特别小,氢氧化物的碱性也特别弱,因此,钪和稀土元素混在一起时,用氨(或极稀的碱)处理,钪将首先析出,故应用"分级沉淀"法可比较容易地把它从稀土元素中分离出来。另一种方法是利用硝酸盐的分极分解进行分离,由于硝酸钪最容易分解,从而达到分离的目的。 用电解的方法可制得金属钪,在炼钪时将ScCl3、KCl、LiCl共熔,以熔融的锌为阴极电解之,使钪在锌极上析出,然后将锌蒸去可得金属钪。另外,在加工矿石生产铀、钍和镧系元素时易回收钪。钨、锡矿中综合回收伴生的钪也是钪的重要来源之一。 钪在化合物中主要呈3价态,在空气中容易氧化成Sc2O3而失去金属光泽变成暗灰色。 钪的主要用途有:(1)钪能与热水作用放出氢,也易溶于酸,是一种强还原剂。 (2)钪的氧化物及氢氧化物只显碱性,但其盐灰几乎不能水解。钪的氯化物为白色结晶,易溶于水并能在空气中潮解。 (3)在冶金工业中,钪常用于制造合金(合金的添加剂),以改善合金的强度、硬度和耐热和性能。如,在铁水中加入少量的钪,可显著改善铸铁的性能,少量的钪加入铝中,可改善其强度和耐热性。 (4)在电子工业中,钪可用作各种半导体器件,如钪的亚硫酸盐在半导体中的应用已引起了国内外的注意,含钪的铁氧体在计算机磁芯中也颇有前途。 (5)在化学工业上,用钪化合物作酒精脱氢及脱水剂,生产乙烯和用废盐酸生产氯时的高效催化剂。 (6)在玻璃工业中,可以制造含钪的特种玻璃。 (7)在电光源工业中,含钪和钠制成的钪钠灯,具有效率高和光色正的优点。 (8)自然界中钪均以45Sc形式存在,另外,钪还有9种放射性同位素,即40~44Sc和46~49Sc。其中,46Sc作为示踪剂,已在化工、冶金及海洋学等方面使用。在医学上,国外还有人研究用46Sc来医治癌症
G. 宝源精木板真的好吗
肯定啊,宝源精木板是湖北宝源木业生产的,设备从德国迪芬巴赫公司、帕尔曼公司和美国GTS公司引进的,生产的木材是不含甲醛的环保木材,优点很多的,你可以多去了解下!
H. 问历届诺贝尔化学奖得主
历届诺贝尔化学奖得主:
1901年 J. H. 范特·霍夫(荷兰人)发现溶液中化学动力学法则和渗透压规律
1902年 E. H. 费雪(德国人)合成了糖类以及嘌噙诱导体
1903年 S . A . 阿伦纽斯(瑞典人)提出电解质溶液理论
1904年 W . 拉姆赛(英国人)发现空气中的惰性气体
1905年 A .冯·贝耶尔(德国人)
从事有机染料以及氢化芳香族化合物的研究
1906年 H . 莫瓦桑(法国人)从事氟元素的研究
1907年 E .毕希纳(德国人)从事酵素和酶化学、生物学研究
1908年 E. 卢瑟福(英国人)首先提出放射性元素的蜕变理论
1909年 W. 奥斯特瓦尔德(德国人)从事催化作用、化学平衡以及反应速度的研究
1910年 O. 瓦拉赫(德国人)
脂环式化合物的奠基人
1911年 M. 居里(法国人)发现镭和钋
1912年 V. 格林尼亚(法国人)发明了格林尼亚试剂 —— 有机镁试剂
P. 萨巴蒂(法国人)使用细金属粉末作催化剂,发明了一种制取氢化不饱和烃的有效方法
1913年 A. 维尔纳 (瑞士人)从事分子内原子化合价的研究
1914年 T.W. 理查兹(美国人)致力于原子量的研究,精确地测定了许多元素的原子量
1915年 R. 威尔斯泰特(德国人)从事植物色素(叶绿素)的研究
1916---1917年 未颁奖
1918年 F. 哈伯(德国人)发明固氮法
1919年 未颁奖
1920年 W.H. 能斯脱(德国人)从事电化学和热动力学方面的研究
1921年 F. 索迪(英国人)从事放射性物质的研究,首次命名“同位素”
1922年 F.W. 阿斯顿(英国人) 发现非放射性元素中的同位素并开发了质谱仪
1923年 F. 普雷格尔(奥地利人)创立了有机化合物的微量分析法
1924年 未颁奖
1925年 R.A. 席格蒙迪(德国人)从事胶体溶液的研究并确立了胶体化学
1926年 T. 斯韦德贝里(瑞典人)从事胶体化学中分散系统的研究
1927年 H.O. 维兰德(德国人)
研究确定了胆酸及多种同类物质的化学结构
1928年 A. 温道斯(德国人)研究出一族甾醇及其与维生素的关系
1929年 A. 哈登(英国人),冯·奥伊勒 – 歇尔平(瑞典人)阐明了糖发酵过程和酶的作用
1930年 H. 非舍尔(德国人)从事血红素和叶绿素的性质及结构方面的研究
1931年 C. 博施(德国人),F.贝吉乌斯(德国人)发明和开发了高压化学方法
1932年 I. 兰米尔 (美国人) 创立了表面化学
1933年 未颁奖
1934年 H.C. 尤里(美国人)发现重氢
1935年 J.F.J. 居里,I.J. 居里(法国人)发明了人工放射性元素
1936年 P.J.W. 德拜(美国人)提出分子磁耦极矩概念并且应用X射线衍射弄清分子结构
1937年 W. N. 霍沃斯(英国人) 从事碳水化合物和维生素C的结构研究
P. 卡雷(瑞士人) 从事类胡萝卜、核黄素以及维生素 A、B2的研究
1938年 R. 库恩(德国人) 从事类胡萝卜素以及维生素类的研究
1939年 A. 布泰南特(德国人)从事性激素的研究
L. 鲁齐卡(瑞士人) 从事萜、聚甲烯结构方面的研究
1940年—1942年 未颁奖
1943年 G. 海韦希(匈牙利人)利用放射性同位素示踪技术研究化学和物理变化过程
1944年 O. 哈恩(德国人) 发现重核裂变反应
1945年 A.I.魏尔塔南(芬兰人)研究农业化学和营养化学,发明了饲料贮藏保养鲜法
1946年 J. B. 萨姆纳(美国人) 首次分离提纯了酶
J. H. 诺思罗普,W. M. 斯坦利(美国人) 分离提纯酶和病毒蛋白质
1947年 R. 鲁宾逊(英国人)从事生物碱的研究
1948年 A. W. K. 蒂塞留斯(瑞典人) 发现电泳技术和吸附色谱法
1949年 W.F. 吉奥克(美国人)
长期从事化学热力学的研究,物别是对超温状态下的物理反应的研究
1950年 O.P.H. 狄尔斯、K.阿尔德(德国人)发现狄尔斯 – 阿尔德反应及其应用
1951年 G.T. 西博格、E.M. 麦克米伦(美国人) 发现超铀元素
1952年 A.J.P. 马丁、R.L.M. 辛格(英国人)开发并应用了分配色谱法
1953年 H. 施陶丁格(德国人)从事环状高分子化合物的研究
1954年 L.C.鲍林(美国人)阐明化学结合的本性,解释了复杂的分子结构
1955年 V. 维格诺德 (美国人)
确定并合成了含硫的生物体物质(特别是后叶催产素和增压素)
1956年 C.N. 欣谢尔伍德(英国人)
N.N. 谢苗诺夫(俄国人)提出气相反应的化学动力学理论(特别是支链反应)
1957年 A.R. 托德(英国人)从事核酸酶以及核酸辅酶的研究
1958年 F. 桑格(英国人)从事胰岛素结构的研究
1959年 J. 海洛夫斯基(捷克人)提出极普学理论并发现“极普法”
1960年 W.F. 利时(美国人)发明了“放射性碳素年代测定法”
1961年 M. 卡尔文(美国人)
提示了植物光合作用机理
1962年 M.F. 佩鲁茨、J.C. 肯德鲁(英国人)
测定了蛋白质的精细结构
1963年 K. 齐格勒(德国人)、G. 纳塔(意大利人)
发现了利用新型催化剂进行聚合的方法,并从事这方面的基础研究
1964年 D.M.C. 霍金英(英国人)
使用X射线衍射技术测定复杂晶体和大分子的空间结构
1965年 R.B. 伍德沃德(美国人)
因对有机合成法的贡献
1966年 R.S. 马利肯(美国人)
用量子力学创立了化学结构分子轨道理论,阐明了分子的共价键本质和电子结构
1967年 R.G.W.诺里会、G. 波特(英国人)
M. 艾根(德国人)
发明了测定快速 化学反应的技术
1968年 L. 翁萨格(美国人)从事不可逆过程热力学的基础研究
1969年 O. 哈塞尔(挪威人)、K.H.R. 巴顿(英国人)
为发展立体化学理论作出贡献
1970年 L.F. 莱洛伊尔(阿根廷人)发现糖核苷酸及其在糖合成过程中的作用
1971年 G. 赫兹伯格(加拿大人)从事自由基的电子结构和几何学结构的研究
1972年 C.B. 安芬森(美国人)确定了核糖核苷酸酶的活性区位研究
1973年 E.O. 菲舍尔(德国人)、G. 威尔金森(英国人)从事具有多层结构的有机金属化合物的研究
1974年 P.J. 弗洛里(美国人)从事高分子化学的理论、实验两方面的基础研究
1975年 J.W. 康福思(澳大利亚人)研究酶催化反应的立体化学
V.普雷洛格(瑞士人)从事有机分子以及有机分子的立体化学研究
1976年 W.N. 利普斯科姆(美国人)从事甲硼烷的结构研究
1977年 I. 普里戈金(比利时人)主要研究非平衡热力学,提出了“耗散结构”理论
1978年 P.D. 米切尔(英国人)从事生物膜上的能量转换研究
1979年 H.C. 布朗(美国人)、G. 维蒂希(德国人)研制了新的有机合成法
1980年 P. 伯格(美国人)从事核酸的生物化学研究
W.吉尔伯特(美国人)、F. 桑格(英国人)确定了核酸的碱基排列顺序
1981年 福井谦一(日本人)、R. 霍夫曼(英国人) 确定了核酸的碱基排列顺序
1982年 A. 克卢格(英国人)开发了结晶学的电子衍射法,并从事核酸蛋白质复合体的立体结构的研究
1983年 H.陶布(美国人)阐明了金属配位化合物电子反应机理
1984年 R.B. 梅里菲尔德(美国人)开发了极简便的肽合成法
1985年 J.卡尔、H.A.豪普特曼(美国人)开发了应用X射线衍射确定物质晶体结构的直接计算法
1986年 D.R. 赫希巴奇、李远哲(中国台湾人)、J.C.波利亚尼(加拿大人)研究化学反应体系在位能面运动过程的动力学
1987年 C.J.佩德森、D.J. 克拉姆(美国人)
J.M. 莱恩(法国人)合成冠醚化合物
1988年 J. 戴森霍弗、R. 胡伯尔、H. 米歇尔(德国人)分析了光合作用反应中心的三维结构
1989年 S. 奥尔特曼, T.R. 切赫(美国人)发现RNA自身具有酶的催化功能
1990年 E.J. 科里(美国人)创建了一种独特的有机合成理论——逆合成分析理论
1991年 R.R. 恩斯特(瑞士人)发明了傅里叶变换核磁共振分光法和二维核磁共振技术
1992年 R.A. 马库斯(美国人)对溶液中的电子转移反应理论作了贡献
1993年 K.B. 穆利斯(美国人)发明“聚合酶链式反应”法
M. 史密斯(加拿大人)开创“寡聚核苷酸基定点诱变”法
1994年 G.A. 欧拉(美国人)在碳氢化合物即烃类研究领域作出了杰出贡献
1995年 P.克鲁岑(德国人)、M. 莫利纳、F.S. 罗兰(美国人)
阐述了对臭氧层产生影响的化学机理,证明了人造化学物质对臭氧层构成破坏作用
1996年 R.F.柯尔(美国人)、H.W.克罗托因(英国人)、R.E.斯莫利(美国人)
发现了碳元素的新形式——富勒氏球(也称布基球)C60
1997年 P.B.博耶(美国人)、J.E.沃克尔(英国人)、J.C.斯科(丹麦人)发现人体细胞内负责储藏转移能量的离子传输酶
1998年 W.科恩(奥地利)J.波普(英国)提出密度泛函理论
1999年 艾哈迈德-泽维尔(美籍埃及人)将毫微微秒光谱学应用于化学反应的转变状态研究
2000年 黑格(美国人)、麦克迪尔米德(美国人)、白川秀树(日本人)因发现能够导电的塑料有功
2001年 威廉·诺尔斯(美国人)、野依良治(日本人)
在“手性催化氢化反应”领域取得成就巴里·夏普莱斯(美国人)在“手性催化氧化反应”领域取得成就。
2002年 约翰-B-芬恩(美国人)、田中耕一(日本人)在生物高分子大规模光谱测定分析中发展了软解吸附作用电离方法。
库特-乌特里希(瑞士人)以核电磁共振光谱法确定了溶剂的生物高分子三维结构。
2003年 阿格里(美国人)和麦克农(美国人)研究细胞隔膜
2004年诺贝尔化学奖授予以色列科学家阿龙·切哈诺沃、阿夫拉姆·赫什科和美国科学家欧文·罗斯,以表彰他们发现了泛素调节的蛋白质降解。其实他们的成果就是发现了一种蛋白质“死亡”的重要机理。
2005年
三位获奖者分别是法国石油研究所的伊夫·肖万、美国加州理工学院的罗伯特·格拉布和麻省理工学院的理查德·施罗克。他们获奖的原因是在有机化学的烯烃复分解反应研究方面作出了贡献。烯烃复分解反应广泛用于生产药品和先进塑料等材料,使得生产效率更高,产品更稳定,而且产生的有害废物较少。瑞典皇家科学院说,这是重要基础科学造福于人类、社会和环境的例证。
2006
美国科学家罗杰·科恩伯格因在“真核转录的分子基础”研究领域所作出的贡献而独自获得2006年诺贝尔化学奖